IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60707-3.html
   My bibliography  Save this article

Controlled deintercalation of graphene/organic superlattices with dense atomic-scale steric Schottky heterojunctions for extreme microwave absorption

Author

Listed:
  • Ruopeng Cui

    (Tsinghua University)

  • Yi Li

    (Beijing University of Chemical Technology)

  • Xuefei Zhang

    (Tsinghua University)

  • Zewen Duan

    (Tsinghua University)

  • Biao Zhao

    (Fudan University)

  • Chunlei Wan

    (Tsinghua University)

Abstract

Integrating 2D (semi)metals and semiconductors into atomic-scale Schottky heterojunctions offers a promising pathway for achieving robust charge separation, crucial for microwave absorbers, electromagnetic interference shielding materials, electrocatalysts, photocatalysts, etc. However, conventional bottom-up assembly approaches often encounter challenges of severe agglomeration of 2D components and non-basal contacts due to lattice mismatch, resulting in a suboptimal interfacial density and insufficient charge separation. This study introduces a top-down approach involving the thermal deintercalation of graphene/alkylamine superlattices, leading to the in-situ formation of Schottky heterojunctions between the thermally reduced p-type rGO-alkylamine superlattice phase and entirely deintercalated semimetallic rGO phase (rGO denotes reduced graphene oxide), which can be flexibly tuned by the length of the alkylamines. A spatial network of 2D/2D vertical/lateral Schottky heterojunctions is thus formed with high interfacial density, greatly facilitating charge separation, and thereby strengthening polarization loss while reducing conduction loss. This ensures steady permittivity in the Ku band, maintaining strong absorption under small oblique incidence. Accordingly, a record-high simulated far-field bistatic radar cross-section reduction of 72.68 dB at 1° is attained along with diversified adaptive multifunctionality. This paper provides a groundbreaking avenue realizing spatially distributed atomic-scale 2D/2D Schottky heterojunctions in 2D materials, promoting various related functional materials.

Suggested Citation

  • Ruopeng Cui & Yi Li & Xuefei Zhang & Zewen Duan & Biao Zhao & Chunlei Wan, 2025. "Controlled deintercalation of graphene/organic superlattices with dense atomic-scale steric Schottky heterojunctions for extreme microwave absorption," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60707-3
    DOI: 10.1038/s41467-025-60707-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60707-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60707-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Qian & Huaying Ren & Jingyuan Zhou & Zhong Wan & Jingxuan Zhou & Xingxu Yan & Jin Cai & Peiqi Wang & Bailing Li & Zdenek Sofer & Bo Li & Xidong Duan & Xiaoqing Pan & Yu Huang & Xiangfeng Duan, 2022. "Chiral molecular intercalation superlattices," Nature, Nature, vol. 606(7916), pages 902-908, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anil-Kumar Singh & Kévin Martin & Maurizio Mastropasqua Talamo & Axel Houssin & Nicolas Vanthuyne & Narcis Avarvari & Oren Tal, 2025. "Single-molecule junctions map the interplay between electrons and chirality," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    2. Yuwaraj Adhikari & Tianhan Liu & Hailong Wang & Zhenqi Hua & Haoyang Liu & Eric Lochner & Pedro Schlottmann & Binghai Yan & Jianhua Zhao & Peng Xiong, 2023. "Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mingjian Zeng & Weiguang Wang & Shuman Zhang & Zhisheng Gao & Yingmeng Yan & Yitong Liu & Yulong Qi & Xin Yan & Wei Zhao & Xin Zhang & Ningning Guo & Huanhuan Li & Hui Li & Gaozhan Xie & Ye Tao & Runf, 2024. "Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xia Wang & Qun Yang & Sukriti Singh & Horst Borrmann & Vicky Hasse & Changjiang Yi & Yongkang Li & Marcus Schmidt & Xiaodong Li & Gerhard H. Fecher & Dong Zhou & Binghai Yan & Claudia Felser, 2025. "Topological semimetals with intrinsic chirality as spin-controlling electrocatalysts for the oxygen evolution reaction," Nature Energy, Nature, vol. 10(1), pages 101-109, January.
    5. Bogdan Dryzhakov & Yipeng Tang & Jong Keum & Haile Ambaye & Jinwoo Kim & Tae-Woo Lee & Valeria Lauter & Bin Hu, 2025. "Spin switchable optical phenomena in Rashba band structures through intersystem crossing in momentum space in solution-processing 2D-superlattice perovskite film," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Sandhya Susarla & Shanglin Hsu & Fernando Gómez-Ortiz & Pablo García-Fernández & Benjamin H. Savitzky & Sujit Das & Piush Behera & Javier Junquera & Peter Ercius & Ramamoorthy Ramesh & Colin Ophus, 2023. "The emergence of three-dimensional chiral domain walls in polar vortices," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Lvpeng Yang & Yerun Gao & Zhenye Wang & Long Yang & Ming Shao, 2025. "Spin detector for panchromatic circularly polarized light detection," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Shijie Xu & Bingqian Dai & Yuhao Jiang & Danrong Xiong & Houyi Cheng & Lixuan Tai & Meng Tang & Yadong Sun & Yu He & Baolin Yang & Yong Peng & Kang L. Wang & Weisheng Zhao, 2024. "Universal scaling law for chiral antiferromagnetism," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60707-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.