IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60703-7.html
   My bibliography  Save this article

Capacitive in-sensor tactile computing

Author

Listed:
  • Yan Chen

    (Fudan University
    Fudan University
    Zhangjiang Laboratory)

  • Jie Cao

    (Fudan University)

  • Jie Qiu

    (Fudan University
    Fudan University
    Zhangjiang Laboratory)

  • Dongzi Yang

    (Fudan University
    Fudan University)

  • Mengyang Liu

    (Fudan University)

  • Mengru Zhang

    (Fudan University
    Fudan University)

  • Chenyang Li

    (Fudan University
    Fudan University
    Zhangjiang Laboratory)

  • Zhongyuan Wu

    (Fudan University)

  • Jie Yu

    (Fudan University)

  • Xumeng Zhang

    (Fudan University)

  • Xianzhe Chen

    (Fudan University)

  • Zhangcheng Huang

    (Fudan University)

  • Enming Song

    (Fudan University)

  • Ming Wang

    (Fudan University
    Zhangjiang Laboratory)

  • Qi Liu

    (Fudan University
    Zhangjiang Laboratory)

  • Ming Liu

    (Fudan University
    Zhangjiang Laboratory)

Abstract

Real-time sensing and processing of tactile information are essential to enhance the capability of artificial electronic skins (e-skins), enabling unprecedented intelligent applications in tactile exploration and object manipulation. However, conventional tactile e-skin systems typically execute redundant data transfer and conversion for decision making due to their physical separation between sensors and processing units, leading to high transmission latency and power consumption. Here, we report an in-sensor tactile computing system based on a flexible capacitive pressure sensor array. This system utilizes multiple connected sensor networks to execute in-situ analog multiplication and accumulation operations, achieving both tactile sensing and computing functionalities. We experimentally implemented the in-sensor tactile computing system for low-level tactile sensory processing tasks including noise reduction and edge detection. The consumed power for single sensing-computing operation is over 22 times lower than that of a conventional mixed electronic system. These results demonstrate that our capacitive in-sensor computing system paves a promising way for power-constrained applications such as robotics and human-machine interfaces.

Suggested Citation

  • Yan Chen & Jie Cao & Jie Qiu & Dongzi Yang & Mengyang Liu & Mengru Zhang & Chenyang Li & Zhongyuan Wu & Jie Yu & Xumeng Zhang & Xianzhe Chen & Zhangcheng Huang & Enming Song & Ming Wang & Qi Liu & Min, 2025. "Capacitive in-sensor tactile computing," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60703-7
    DOI: 10.1038/s41467-025-60703-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60703-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60703-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ningning Bai & Yiheng Xue & Shuiqing Chen & Lin Shi & Junli Shi & Yuan Zhang & Xingyu Hou & Yu Cheng & Kaixi Huang & Weidong Wang & Jin Zhang & Yuan Liu & Chuan Fei Guo, 2023. "A robotic sensory system with high spatiotemporal resolution for texture recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Mengwei Liu & Yujia Zhang & Jiachuang Wang & Nan Qin & Heng Yang & Ke Sun & Jie Hao & Lin Shu & Jiarui Liu & Qiang Chen & Pingping Zhang & Tiger H. Tao, 2022. "A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    4. Rui Yuan & Qingxi Duan & Pek Jun Tiw & Ge Li & Zhuojian Xiao & Zhaokun Jing & Ke Yang & Chang Liu & Chen Ge & Ru Huang & Yuchao Yang, 2022. "A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Jie Cao & Xusheng Liu & Jie Qiu & Zhifei Yue & Yang Li & Qian Xu & Yan Chen & Jiewen Chen & Hongfei Cheng & Guozhong Xing & Enming Song & Ming Wang & Qi Liu & Ming Liu, 2024. "Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xun Han & Juan Tao & Yegang Liang & Feng Guo & Zhangsheng Xu & Wenqiang Wu & Jiahui Tong & Mengxiao Chen & Caofeng Pan & Jianhua Hao, 2024. "Ultraweak light-modulated heterostructure with bidirectional photoresponse for static and dynamic image perception," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Zhixin Yao & Huifeng Tian & U. Sasaki & Huacong Sun & Jingyi Hu & Guodong Xue & Ye Seul Jung & Ruijie Li & Zhenjiang Li & PeiChi Liao & Yihan Wang & Lina Yang Zhang & Ge Yin & Xuanyu Zhang & Yijie Luo, 2025. "Transferrable, wet-chemistry-derived high-k amorphous metal oxide dielectrics for two-dimensional electronic devices," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Yuchen Cai & Jia Yang & Yutang Hou & Feng Wang & Lei Yin & Shuhui Li & Yanrong Wang & Tao Yan & Shan Yan & Xueying Zhan & Jun He & Zhenxing Wang, 2025. "8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Lei Tong & Yali Bi & Yilun Wang & Kai Peng & Xinyu Huang & Wei Ju & Zhuiri Peng & Zheng Li & Langlang Xu & Runfeng Lin & Xiangxiang Yu & Wenhao Shi & Hui Yu & Huajun Sun & Kanhao Xue & Qiang He & Ming, 2024. "Programmable nonlinear optical neuromorphic computing with bare 2D material MoS2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Xiangnan He & Biao Zhang & Qingjiang Liu & Hao Chen & Jianxiang Cheng & Bingcong Jian & Hanlin Yin & Honggeng Li & Ke Duan & Jianwei Zhang & Qi Ge, 2024. "Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Ge Li & Donggang Xie & Qinghua Zhang & Mingzhen Zhang & Zhuohui Liu & Zheng Wang & Jiahui Xie & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2025. "Interface-engineered non-volatile visible-blind photodetector for in-sensor computing," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    10. Je-Jun Lee & Seong-Jun Han & Changsoon Choi & Chaewon Seo & Seungkwon Hwang & Jihyun Kim & Jung Pyo Hong & Jisu Jang & Jihoon Kyhm & Jung Woo Kim & Byoung-Soo Yu & Jung Ah Lim & Gunuk Wang & Joohoon K, 2025. "Polarization-sensitive in-sensor computing in chiral organic integrated 2D p-n heterostructures for mixed-multimodal image processing," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Samarth Jain & Sifan Li & Haofei Zheng & Lingqi Li & Xuanyao Fong & Kah-Wee Ang, 2025. "Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Guobin Zhang & Xuemeng Fan & Jie Wang & Zijian Wang & Zhejia Zhang & Pengtao Li & Yitao Ma & Kejie Huang & Bin Yu & Qing Wan & Xiangshui Miao & Yishu Zhang, 2025. "Self-rectifying memristors with high rectification ratio for attack-resilient autonomous driving systems," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    14. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Bo Tong & Jiajun Xu & Jinhong Du & Peitao Liu & Tianming Du & Qiang Wang & Langjun Li & Yuning Wei & Jiangxu Li & Jinhua Liang & Chi Liu & Zhibo Liu & Chen Li & Lai-Peng Ma & Yang Chai & Wencai Ren, 2025. "2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Yanqiu Guan & Haochen Li & Yi Zhang & Yuchen Qiu & Labao Zhang & Xiangyang Ji & Hao Wang & Qi Chen & Liang Ma & Xiaohan Wang & Zhuolin Yang & Xuecou Tu & Qingyuan Zhao & Xiaoqing Jia & Jian Chen & Lin, 2025. "Photon-efficient camera with in-sensor computing," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    17. Haihui Lan & Luyang Wang & Runze He & Shuyi Huang & Jinqiu Yu & Jinming Guo & Jingrui Luo & Yiling Li & Jinyang Zhang & Jiaxin Lin & Shunping Zhang & Mengqi Zeng & Lei Fu, 2023. "2D quasi-layered material with domino structure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Zheshun Xiong & Wen Liang & Meiyue Zhang & Dacheng Mao & Qiangfei Xia & Guangyu Xu, 2025. "Parallelizing analog in-sensor visual processing with arrays of gate-tunable silicon photodetectors," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Yue Gong & Ruihuan Duan & Yi Hu & Yao Wu & Song Zhu & Xingli Wang & Qijie Wang & Shu Ping Lau & Zheng Liu & Beng Kang Tay, 2025. "Reconfigurable and nonvolatile ferroelectric bulk photovoltaics based on 3R-WS2 for machine vision," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    20. Tian Zhang & Xin Guo & Pan Wang & Xinyi Fan & Zichen Wang & Yan Tong & Decheng Wang & Limin Tong & Linjun Li, 2024. "High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60703-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.