IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59935-4.html
   My bibliography  Save this article

Polarization-sensitive in-sensor computing in chiral organic integrated 2D p-n heterostructures for mixed-multimodal image processing

Author

Listed:
  • Je-Jun Lee

    (Korea Institute of Science and Technology (KIST))

  • Seong-Jun Han

    (Korea Institute of Science and Technology (KIST)
    Korea University)

  • Changsoon Choi

    (Korea Institute of Science and Technology (KIST))

  • Chaewon Seo

    (Pusan National University)

  • Seungkwon Hwang

    (Korea Institute of materials Science (KIMS))

  • Jihyun Kim

    (Yonsei University)

  • Jung Pyo Hong

    (Korea Institute of Science and Technology (KIST)
    Korea University)

  • Jisu Jang

    (Korea Institute of Science and Technology (KIST))

  • Jihoon Kyhm

    (Korea Institute of Science and Technology (KIST))

  • Jung Woo Kim

    (Korea Institute of Science and Technology (KIST)
    Korea University)

  • Byoung-Soo Yu

    (Korea Institute of Science and Technology (KIST)
    University of Science and Technology (UST))

  • Jung Ah Lim

    (University of Science and Technology (UST)
    Korea Institute of Science and Technology (KIST))

  • Gunuk Wang

    (Korea University)

  • Joohoon Kang

    (Yonsei University)

  • Yonghun Kim

    (Korea Institute of materials Science (KIMS))

  • Suk-kyun Ahn

    (Pusan National University)

  • Jongtae Ahn

    (Changwon National University)

  • Do Kyung Hwang

    (Korea Institute of Science and Technology (KIST)
    Korea University
    University of Science and Technology (UST))

Abstract

Sensor-based computing minimizes latency and energy consumption by processing data at the capture point, thereby eliminating extensive data transfer and enabling real-time decision-making. Here, we present a breakthrough in in-sensor computing via circularly polarized light detectors that integrate cholesteric liquid crystal reflectors with two-dimensional van der Waals p-n heterostructures. Our device exhibits a high dissymmetry factor (1.90), allowing effective separation of mixed circularly polarized images, along with a rapid photoresponse (4 μs) and wide linear dynamic range (up to 114.1 dB), suitable for analog multiply-and-accumulate operations in convolution-based in-sensor computing. Harnessing these detectors, we propose mixed-multimodal in-sensor computing using the chiral state of circularly polarized light to dynamically control responsivity, which enables the blending of two arbitrary image processing modes within a single, non-reconfigurable circuit. By effectively integrating polarization-sensitive detectors into the in-sensor computing framework, the proposed architecture preserves kernel optimization capabilities while simplifying circuit complexity.

Suggested Citation

  • Je-Jun Lee & Seong-Jun Han & Changsoon Choi & Chaewon Seo & Seungkwon Hwang & Jihyun Kim & Jung Pyo Hong & Jisu Jang & Jihoon Kyhm & Jung Woo Kim & Byoung-Soo Yu & Jung Ah Lim & Gunuk Wang & Joohoon K, 2025. "Polarization-sensitive in-sensor computing in chiral organic integrated 2D p-n heterostructures for mixed-multimodal image processing," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59935-4
    DOI: 10.1038/s41467-025-59935-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59935-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59935-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    2. Peter Lodahl & Sahand Mahmoodian & Søren Stobbe & Arno Rauschenbeutel & Philipp Schneeweiss & Jürgen Volz & Hannes Pichler & Peter Zoller, 2017. "Chiral quantum optics," Nature, Nature, vol. 541(7638), pages 473-480, January.
    3. Jacob F. Sherson & Hanna Krauter & Rasmus K. Olsson & Brian Julsgaard & Klemens Hammerer & Ignacio Cirac & Eugene S. Polzik, 2006. "Quantum teleportation between light and matter," Nature, Nature, vol. 443(7111), pages 557-560, October.
    4. Wei Li & Zachary J. Coppens & Lucas V. Besteiro & Wenyi Wang & Alexander O. Govorov & Jason Valentine, 2015. "Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    5. Danlei Zhu & Wei Jiang & Zetong Ma & Jiajing Feng & Xiuqin Zhan & Cheng Lu & Jie Liu & Jie Liu & Yuanyuan Hu & Dong Wang & Yong Sheng Zhao & Jianpu Wang & Zhaohui Wang & Lang Jiang, 2022. "Organic donor-acceptor heterojunctions for high performance circularly polarized light detection," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Yang Chai, 2020. "In-sensor computing for machine vision," Nature, Nature, vol. 579(7797), pages 32-33, March.
    7. Inho Song & Jaeyong Ahn & Hyungju Ahn & Sang Hyuk Lee & Jianguo Mei & Nicholas A. Kotov & Joon Hak Oh, 2023. "Helical polymers for dissymmetric circularly polarized light imaging," Nature, Nature, vol. 617(7959), pages 92-99, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seok Daniel Namgung & Ryeong Myeong Kim & Yae-Chan Lim & Jong Woo Lee & Nam Heon Cho & Hyeohn Kim & Jin-Suk Huh & Hanju Rhee & Sanghee Nah & Min-Kyu Song & Jang-Yeon Kwon & Ki Tae Nam, 2022. "Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Xun Han & Juan Tao & Yegang Liang & Feng Guo & Zhangsheng Xu & Wenqiang Wu & Jiahui Tong & Mengxiao Chen & Caofeng Pan & Jianhua Hao, 2024. "Ultraweak light-modulated heterostructure with bidirectional photoresponse for static and dynamic image perception," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Ge Li & Donggang Xie & Qinghua Zhang & Mingzhen Zhang & Zhuohui Liu & Zheng Wang & Jiahui Xie & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2025. "Interface-engineered non-volatile visible-blind photodetector for in-sensor computing," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Junyoung Kwon & Jae Bum Jeon & Min Gu Lee & Serin Jeong & Won Jin Choi & Kyung Min Kim & Jihyeon Yeom, 2025. "Enantioselective Se lattices for stable chiroptoelectronic processing media," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Danlei Zhu & Wei Jiang & Zetong Ma & Jiajing Feng & Xiuqin Zhan & Cheng Lu & Jie Liu & Jie Liu & Yuanyuan Hu & Dong Wang & Yong Sheng Zhao & Jianpu Wang & Zhaohui Wang & Lang Jiang, 2022. "Organic donor-acceptor heterojunctions for high performance circularly polarized light detection," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Doeon Lee & Minseong Park & Yongmin Baek & Byungjoon Bae & Junseok Heo & Kyusang Lee, 2022. "In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Jose Mendoza-Carreño & Simone Bertucci & Mauro Garbarino & Matilde Cirignano & Sergio Fiorito & Paola Lova & Miquel Garriga & Maria Isabel Alonso & Francesco Di Stasio & Agustín Mihi, 2024. "A single nanophotonic platform for producing circularly polarized white light from non-chiral emitters," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Jiapeng Zheng & Yuang Fu & Jing Wang & Wei Zhang & Xinhui Lu & Hai-Qing Lin & Lei Shao & Jianfang Wang, 2025. "Circularly polarized OLEDs from chiral plasmonic nanoparticle-molecule hybrids," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Guangdong Zhou & Jie Li & Qunliang Song & Lidan Wang & Zhijun Ren & Bai Sun & Xiaofang Hu & Wenhua Wang & Gaobo Xu & Xiaodie Chen & Lan Cheng & Feichi Zhou & Shukai Duan, 2023. "Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Boyuan Cui & Zhen Fan & Wenjie Li & Yihong Chen & Shuai Dong & Zhengwei Tan & Shengliang Cheng & Bobo Tian & Ruiqiang Tao & Guo Tian & Deyang Chen & Zhipeng Hou & Minghui Qin & Min Zeng & Xubing Lu & , 2022. "Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Mingjin Dai & Chongwu Wang & Bo Qiang & Fakun Wang & Ming Ye & Song Han & Yu Luo & Qi Jie Wang, 2022. "On-chip mid-infrared photothermoelectric detectors for full-Stokes detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Li-Zhe Feng & Jing-Jing Wang & Tao Ma & Yi-Chen Yin & Kuang-Hui Song & Zi-Du Li & Man-Man Zhou & Shan Jin & Taotao Zhuang & Feng-Jia Fan & Man-Zhou Zhu & Hong-Bin Yao, 2022. "Biomimetic non-classical crystallization drives hierarchical structuring of efficient circularly polarized phosphors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Zhixin Yao & Huifeng Tian & U. Sasaki & Huacong Sun & Jingyi Hu & Guodong Xue & Ye Seul Jung & Ruijie Li & Zhenjiang Li & PeiChi Liao & Yihan Wang & Lina Yang Zhang & Ge Yin & Xuanyu Zhang & Yijie Luo, 2025. "Transferrable, wet-chemistry-derived high-k amorphous metal oxide dielectrics for two-dimensional electronic devices," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    20. Yuchen Cai & Jia Yang & Yutang Hou & Feng Wang & Lei Yin & Shuhui Li & Yanrong Wang & Tao Yan & Shan Yan & Xueying Zhan & Jun He & Zhenxing Wang, 2025. "8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59935-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.