IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60530-w.html
   My bibliography  Save this article

In-material physical computing based on reconfigurable microwire arrays via halide-ion segregation

Author

Listed:
  • Dengji Li

    (City University of Hong Kong)

  • Pengshan Xie

    (City University of Hong Kong)

  • Yuekun Yang

    (Nanjing University
    Nanjing University)

  • Yunfan Wang

    (City University of Hong Kong)

  • Changyong Lan

    (University of Electronic Science and Technology of China)

  • Yiyang Wei

    (University of Electronic Science and Technology of China)

  • Jiachi Liao

    (City University of Hong Kong)

  • Bowen Li

    (City University of Hong Kong
    City University of Hong Kong)

  • Zenghui Wu

    (City University of Hong Kong)

  • Quan Quan

    (City University of Hong Kong)

  • Yuxuan Zhang

    (City University of Hong Kong)

  • You Meng

    (City University of Hong Kong)

  • Mingqi Ding

    (City University of Hong Kong)

  • Yan Yan

    (City University of Hong Kong)

  • Yi Shen

    (City University of Hong Kong)

  • Weijun Wang

    (City University of Hong Kong)

  • Sai-Wing Tsang

    (City University of Hong Kong)

  • Shi-Jun Liang

    (Nanjing University)

  • Feng Miao

    (Nanjing University)

  • Johnny C. Ho

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong
    Kyushu University)

Abstract

Conventional computer systems based on the Von Neumann architecture rely on silicon transistors with binary states for information representation and processing. However, exploiting emerging materials’ intrinsic physical properties and dynamic behaviors offers a promising pathway for developing next-generation brain-inspired neuromorphic hardware. Here, we introduce a stable and controllable photoelectricity-induced halide-ion segregation effect in epitaxially grown mixed-halide perovskite CsPbBr1.5I1.5 microwire networks on mica, as confirmed by various in-situ measurements. The dynamic segregation and recovery processes show the reconfigurable, self-powered photoresponse, enabling non-volatile light information storage and precise modulation of optoelectronic properties. Furthermore, our microwire array successfully addressed a typical graphical neural network problem and an image restoration task without external circuits, underscoring the potential of in-material dynamics to achieve highly parallel and energy-efficient physical computing in the post-Moore era.

Suggested Citation

  • Dengji Li & Pengshan Xie & Yuekun Yang & Yunfan Wang & Changyong Lan & Yiyang Wei & Jiachi Liao & Bowen Li & Zenghui Wu & Quan Quan & Yuxuan Zhang & You Meng & Mingqi Ding & Yan Yan & Yi Shen & Weijun, 2025. "In-material physical computing based on reconfigurable microwire arrays via halide-ion segregation," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60530-w
    DOI: 10.1038/s41467-025-60530-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60530-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60530-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yashar D. Hezaveh & Laurence Perreault Levasseur & Philip J. Marshall, 2017. "Fast automated analysis of strong gravitational lenses with convolutional neural networks," Nature, Nature, vol. 548(7669), pages 555-557, August.
    2. Guilherme Migliato Marega & Yanfei Zhao & Ahmet Avsar & Zhenyu Wang & Mukesh Tripathi & Aleksandra Radenovic & Andras Kis, 2020. "Logic-in-memory based on an atomically thin semiconductor," Nature, Nature, vol. 587(7832), pages 72-77, November.
    3. Huichao Zhang & Xu Fu & Ying Tang & Hua Wang & Chunfeng Zhang & William W. Yu & Xiaoyong Wang & Yu Zhang & Min Xiao, 2019. "Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Yicheng Zhao & Peng Miao & Jack Elia & Huiying Hu & Xiaoxia Wang & Thomas Heumueller & Yi Hou & Gebhard J. Matt & Andres Osvet & Yu-Ting Chen & Mariona Tarragó & Dominique Ligny & Thomas Przybilla & P, 2020. "Strain-activated light-induced halide segregation in mixed-halide perovskite solids," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Dongliang Wang & Yikun Nie & Gaolei Hu & Hon Ki Tsang & Chaoran Huang, 2024. "Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Ling Li & Shasha Li & Wenhai Wang & Jielian Zhang & Yiming Sun & Qunrui Deng & Tao Zheng & Jianting Lu & Wei Gao & Mengmeng Yang & Hanyu Wang & Yuan Pan & Xueting Liu & Yani Yang & Jingbo Li & Nengjie, 2024. "Adaptative machine vision with microsecond-level accurate perception beyond human retina," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Yang Chai, 2020. "In-sensor computing for machine vision," Nature, Nature, vol. 579(7797), pages 32-33, March.
    8. Shuxia Tao & Ines Schmidt & Geert Brocks & Junke Jiang & Ionut Tranca & Klaus Meerholz & Selina Olthof, 2019. "Absolute energy level positions in tin- and lead-based halide perovskites," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    9. Wanyi Nie & Jean-Christophe Blancon & Amanda J. Neukirch & Kannatassen Appavoo & Hsinhan Tsai & Manish Chhowalla & Muhammad A. Alam & Matthew Y. Sfeir & Claudine Katan & Jacky Even & Sergei Tretiak & , 2016. "Light-activated photocurrent degradation and self-healing in perovskite solar cells," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    10. Silvia G. Motti & Jay B. Patel & Robert D. J. Oliver & Henry J. Snaith & Michael B. Johnston & Laura M. Herz, 2021. "Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Sergiu Draguta & Onise Sharia & Seog Joon Yoon & Michael C. Brennan & Yurii V. Morozov & Joseph S. Manser & Prashant V. Kamat & William F. Schneider & Masaru Kuno, 2017. "Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    12. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    13. Christopher Eames & Jarvist M. Frost & Piers R. F. Barnes & Brian C. O’Regan & Aron Walsh & M. Saiful Islam, 2015. "Ionic transport in hybrid lead iodide perovskite solar cells," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Han & Juan Tao & Yegang Liang & Feng Guo & Zhangsheng Xu & Wenqiang Wu & Jiahui Tong & Mengxiao Chen & Caofeng Pan & Jianhua Hao, 2024. "Ultraweak light-modulated heterostructure with bidirectional photoresponse for static and dynamic image perception," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhixin Yao & Huifeng Tian & U. Sasaki & Huacong Sun & Jingyi Hu & Guodong Xue & Ye Seul Jung & Ruijie Li & Zhenjiang Li & PeiChi Liao & Yihan Wang & Lina Yang Zhang & Ge Yin & Xuanyu Zhang & Yijie Luo, 2025. "Transferrable, wet-chemistry-derived high-k amorphous metal oxide dielectrics for two-dimensional electronic devices," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Yuchen Cai & Jia Yang & Yutang Hou & Feng Wang & Lei Yin & Shuhui Li & Yanrong Wang & Tao Yan & Shan Yan & Xueying Zhan & Jun He & Zhenxing Wang, 2025. "8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Ge Li & Donggang Xie & Qinghua Zhang & Mingzhen Zhang & Zhuohui Liu & Zheng Wang & Jiahui Xie & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2025. "Interface-engineered non-volatile visible-blind photodetector for in-sensor computing," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Je-Jun Lee & Seong-Jun Han & Changsoon Choi & Chaewon Seo & Seungkwon Hwang & Jihyun Kim & Jung Pyo Hong & Jisu Jang & Jihoon Kyhm & Jung Woo Kim & Byoung-Soo Yu & Jung Ah Lim & Gunuk Wang & Joohoon K, 2025. "Polarization-sensitive in-sensor computing in chiral organic integrated 2D p-n heterostructures for mixed-multimodal image processing," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Bo Tong & Jiajun Xu & Jinhong Du & Peitao Liu & Tianming Du & Qiang Wang & Langjun Li & Yuning Wei & Jiangxu Li & Jinhua Liang & Chi Liu & Zhibo Liu & Chen Li & Lai-Peng Ma & Yang Chai & Wencai Ren, 2025. "2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    8. Doeon Lee & Minseong Park & Yongmin Baek & Byungjoon Bae & Junseok Heo & Kyusang Lee, 2022. "In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Lei Xu & Junling Liu & Xinrui Guo & Shuo Liu & Xilin Lai & Jingyue Wang & Mengshi Yu & Zhengdao Xie & Hailin Peng & Xuming Zou & Xinran Wang & Ru Huang & Ming He, 2024. "Ultrasensitive dim-light neuromorphic vision sensing via momentum-conserved reconfigurable van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Guangdong Zhou & Jie Li & Qunliang Song & Lidan Wang & Zhijun Ren & Bai Sun & Xiaofang Hu & Wenhua Wang & Gaobo Xu & Xiaodie Chen & Lan Cheng & Feichi Zhou & Shukai Duan, 2023. "Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Boyuan Cui & Zhen Fan & Wenjie Li & Yihong Chen & Shuai Dong & Zhengwei Tan & Shengliang Cheng & Bobo Tian & Ruiqiang Tao & Guo Tian & Deyang Chen & Zhipeng Hou & Minghui Qin & Min Zeng & Xubing Lu & , 2022. "Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Zhuiri Peng & Lei Tong & Wenhao Shi & Langlang Xu & Xinyu Huang & Zheng Li & Xiangxiang Yu & Xiaohan Meng & Xiao He & Shengjie Lv & Gaochen Yang & Hao Hao & Tian Jiang & Xiangshui Miao & Lei Ye, 2024. "Multifunctional human visual pathway-replicated hardware based on 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Seok Daniel Namgung & Ryeong Myeong Kim & Yae-Chan Lim & Jong Woo Lee & Nam Heon Cho & Hyeohn Kim & Jin-Suk Huh & Hanju Rhee & Sanghee Nah & Min-Kyu Song & Jang-Yeon Kwon & Ki Tae Nam, 2022. "Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Florine M. Rombach & Akash Dasgupta & Manuel Kober-Czerny & Heon Jin & James M. Ball & Joel A. Smith & Michael D. Farrar & Henry J. Snaith, 2025. "Disentangling degradation pathways of narrow bandgap lead-tin perovskite material and photovoltaic devices," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Junzhi Ye & Navendu Mondal & Ben P. Carwithen & Yunwei Zhang & Linjie Dai & Xiang-Bing Fan & Jian Mao & Zhiqiang Cui & Pratyush Ghosh & Clara Otero‐Martínez & Lars Turnhout & Yi-Teng Huang & Zhongzhen, 2024. "Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Songhua Cai & Zhipeng Li & Yalan Zhang & Tanghao Liu & Peng Wang & Ming-Gang Ju & Shuping Pang & Shu Ping Lau & Xiao Cheng Zeng & Yuanyuan Zhou, 2024. "Intragrain impurity annihilation for highly efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Xiuzhen Li & Biao Qin & Yaxian Wang & Yue Xi & Zhiheng Huang & Mengze Zhao & Yalin Peng & Zitao Chen & Zitian Pan & Jundong Zhu & Chenyang Cui & Rong Yang & Wei Yang & Sheng Meng & Dongxia Shi & Xuedo, 2024. "Sliding ferroelectric memories and synapses based on rhombohedral-stacked bilayer MoS2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60530-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.