IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31186-7.html
   My bibliography  Save this article

Organic donor-acceptor heterojunctions for high performance circularly polarized light detection

Author

Listed:
  • Danlei Zhu

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Wei Jiang

    (Tsinghua University)

  • Zetong Ma

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences)

  • Jiajing Feng

    (Tsinghua University)

  • Xiuqin Zhan

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Cheng Lu

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Jie Liu

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences)

  • Jie Liu

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences)

  • Yuanyuan Hu

    (Hunan University)

  • Dong Wang

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences)

  • Yong Sheng Zhao

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences)

  • Jianpu Wang

    (Nanjing Tech University)

  • Zhaohui Wang

    (Tsinghua University)

  • Lang Jiang

    (Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

Abstract

Development of highly efficient and stable lateral organic circularly polarized light photodetector is a fundamental prerequisite for realization of circularly polarized light integrated applications. However, chiral semiconductors with helical structure are usually found with intrinsically low field-effect mobilities, which becomes a bottleneck for high-performance and multi-wavelength circularly polarized light detection. To address this problem, here we demonstrate a novel strategy to fabricate multi-wavelength circularly polarized light photodetector based on the donor-acceptor heterojunction, where efficient exciton separation enables chiral acceptor layer to provide differentiated concentration of holes to the channel of organic field-effect transistors. Benefitting from the low defect density at the semiconductor/dielectric interface, the photodetectors exhibit excellent stability, enabling current roll-off of about 3–4% over 500 cycles. The photocurrent dissymmetry value and responsivity for circularly polarized light photodetector in air are 0.24 and 0.28 A W−1, respectively. We further demonstrate circularly polarized light communication based on a real-time circularly polarized light detector by decoding the light signal. As the proof-of-concept, the results hold the promise of large-scale circularly polarized light integrated photonic applications.

Suggested Citation

  • Danlei Zhu & Wei Jiang & Zetong Ma & Jiajing Feng & Xiuqin Zhan & Cheng Lu & Jie Liu & Jie Liu & Yuanyuan Hu & Dong Wang & Yong Sheng Zhao & Jianpu Wang & Zhaohui Wang & Lang Jiang, 2022. "Organic donor-acceptor heterojunctions for high performance circularly polarized light detection," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31186-7
    DOI: 10.1038/s41467-022-31186-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31186-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31186-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Liu & Hantang Zhang & Huanli Dong & Lingqiang Meng & Longfeng Jiang & Lang Jiang & Ying Wang & Junsheng Yu & Yanming Sun & Wenping Hu & Alan J. Heeger, 2015. "High mobility emissive organic semiconductor," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    2. Jacob F. Sherson & Hanna Krauter & Rasmus K. Olsson & Brian Julsgaard & Klemens Hammerer & Ignacio Cirac & Eugene S. Polzik, 2006. "Quantum teleportation between light and matter," Nature, Nature, vol. 443(7111), pages 557-560, October.
    3. Yanjun Shi & Lang Jiang & Jie Liu & Zeyi Tu & Yuanyuan Hu & Qinghe Wu & Yuanping Yi & Eliot Gann & Christopher R. McNeill & Hongxiang Li & Wenping Hu & Daoben Zhu & Henning Sirringhaus, 2018. "Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Wei Li & Zachary J. Coppens & Lucas V. Besteiro & Wenyi Wang & Alexander O. Govorov & Jason Valentine, 2015. "Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    5. Jin Young Oh & Simon Rondeau-Gagné & Yu-Cheng Chiu & Alex Chortos & Franziska Lissel & Ging-Ji Nathan Wang & Bob C. Schroeder & Tadanori Kurosawa & Jeffrey Lopez & Toru Katsumata & Jie Xu & Chenxin Zh, 2016. "Intrinsically stretchable and healable semiconducting polymer for organic transistors," Nature, Nature, vol. 539(7629), pages 411-415, November.
    6. Mingchao Xiao & Jie Liu & Chuan Liu & Guangchao Han & Yanjun Shi & Chunlei Li & Xi Zhang & Yuanyuan Hu & Zitong Liu & Xike Gao & Zhengxu Cai & Ji Liu & Yuanping Yi & Shuai Wang & Dong Wang & Wenping H, 2021. "Sub-5 nm single crystalline organic p–n heterojunctions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingjin Dai & Chongwu Wang & Bo Qiang & Fakun Wang & Ming Ye & Song Han & Yu Luo & Qi Jie Wang, 2022. "On-chip mid-infrared photothermoelectric detectors for full-Stokes detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Li-Zhe Feng & Jing-Jing Wang & Tao Ma & Yi-Chen Yin & Kuang-Hui Song & Zi-Du Li & Man-Man Zhou & Shan Jin & Taotao Zhuang & Feng-Jia Fan & Man-Zhou Zhu & Hong-Bin Yao, 2022. "Biomimetic non-classical crystallization drives hierarchical structuring of efficient circularly polarized phosphors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Wenhao Ran & Zhihui Ren & Pan Wang & Yongxu Yan & Kai Zhao & Linlin Li & Zhexin Li & Lili Wang & Juehan Yang & Zhongming Wei & Zheng Lou & Guozhen Shen, 2021. "Integrated polarization-sensitive amplification system for digital information transmission," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Bin Li & Lingling Liu & Yuan Wang & Kun Liu & Zhe Zheng & Shougang Sun & Yongxu Hu & Liqiang Li & Chunju Li, 2024. "Structurally diverse macrocycle co-crystals for solid-state luminescence modulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Yangshuang Bian & Kai Liu & Yang Ran & Yi Li & Yuanhong Gao & Zhiyuan Zhao & Mingchao Shao & Yanwei Liu & Junhua Kuang & Zhiheng Zhu & Mingcong Qin & Zhichao Pan & Mingliang Zhu & Chenyu Wang & Hu Che, 2022. "Spatially nanoconfined N-type polymer semiconductors for stretchable ultrasensitive X-ray detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zhiqiang Gao & Tian-Ran Wei & Tingting Deng & Pengfei Qiu & Wei Xu & Yuecun Wang & Lidong Chen & Xun Shi, 2022. "High-throughput screening of 2D van der Waals crystals with plastic deformability," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Enlong Li & Changsong Gao & Rengjian Yu & Xiumei Wang & Lihua He & Yuanyuan Hu & Huajie Chen & Huipeng Chen & Tailiang Guo, 2022. "MXene based saturation organic vertical photoelectric transistors with low subthreshold swing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Jeseung Lee & Minwoo “Joshua” Kweun & Woorim Lee & Hong Min Seung & Yoon Young Kim, 2024. "Perfect circular polarization of elastic waves in solid media," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Jie Zhao & Hao Jeng & Lorcán O. Conlon & Spyros Tserkis & Biveen Shajilal & Kui Liu & Timothy C. Ralph & Syed M. Assad & Ping Koy Lam, 2023. "Enhancing quantum teleportation efficacy with noiseless linear amplification," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Seung-Han Kang & Jeong-Wan Jo & Jong Min Lee & Sanghee Moon & Seung Bum Shin & Su Bin Choi & Donghwan Byeon & Jaehyun Kim & Myung-Gil Kim & Yong-Hoon Kim & Jong-Woong Kim & Sung Kyu Park, 2024. "Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Dazhi Wang & Liangkun Lu & Zhiyuan Zhao & Kuipeng Zhao & Xiangyu Zhao & Changchang Pu & Yikang Li & Pengfei Xu & Xiangji Chen & Yunlong Guo & Liujia Suo & Junsheng Liang & Yan Cui & Yunqi Liu, 2022. "Large area polymer semiconductor sub-microwire arrays by coaxial focused electrohydrodynamic jet printing for high-performance OFETs," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Seok Daniel Namgung & Ryeong Myeong Kim & Yae-Chan Lim & Jong Woo Lee & Nam Heon Cho & Hyeohn Kim & Jin-Suk Huh & Hanju Rhee & Sanghee Nah & Min-Kyu Song & Jang-Yeon Kwon & Ki Tae Nam, 2022. "Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Lin-Yong Xu & Wei Wang & Xinrong Yang & Shanshan Wang & Yiming Shao & Mingxia Chen & Rui Sun & Jie Min, 2024. "Real-time monitoring polymerization degree of organic photovoltaic materials toward no batch-to-batch variations in device performance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Yuchen Qiu & Bo Zhang & Junchuan Yang & Hanfei Gao & Shuang Li & Le Wang & Penghua Wu & Yewang Su & Yan Zhao & Jiangang Feng & Lei Jiang & Yuchen Wu, 2021. "Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31186-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.