IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58501-2.html
   My bibliography  Save this article

Photon-efficient camera with in-sensor computing

Author

Listed:
  • Yanqiu Guan

    (Nanjing University)

  • Haochen Li

    (Nanjing University)

  • Yi Zhang

    (Tsinghua University)

  • Yuchen Qiu

    (Nanjing University)

  • Labao Zhang

    (Nanjing University
    Hefei National Laboratory
    University of Science and Technology of China)

  • Xiangyang Ji

    (Tsinghua University)

  • Hao Wang

    (Nanjing University
    Hefei National Laboratory)

  • Qi Chen

    (Nanjing University)

  • Liang Ma

    (Nanjing University)

  • Xiaohan Wang

    (Nanjing University)

  • Zhuolin Yang

    (Nanjing University)

  • Xuecou Tu

    (Nanjing University
    Hefei National Laboratory)

  • Qingyuan Zhao

    (Nanjing University)

  • Xiaoqing Jia

    (Nanjing University
    Hefei National Laboratory)

  • Jian Chen

    (Nanjing University)

  • Lin Kang

    (Nanjing University
    Hefei National Laboratory
    University of Science and Technology of China)

  • Peiheng Wu

    (Nanjing University
    Hefei National Laboratory)

Abstract

Image sensors with internal computing capabilities fuse sensing and computing to significantly reduce the power consumption and latency of machine vision tasks. Linear photodetectors such as 2D semiconductors with tunable electrical and optical properties enable in-sensor computing for multiple functions. In-sensor computing at the single-photon level is much more plausible but has not yet been achieved. Here, we demonstrate a photon-efficient camera with in-sensor computing based on a superconducting nanowire array detector with four programmable dimensions including photon count rate, response time, pulse amplitude, and spectral responsivity. At the same time, the sensor features saturated (100%) quantum efficiency in the range of 405–1550 nm. Benefiting from the multidimensional modulation and ultra-high sensitivity, a classification accuracy of 92.22% for three letters is achieved with only 0.12 photons per pixel per pattern. Furthermore, image preprocessing and spectral classification are demonstrated. Photon-efficient in-sensor computing is beneficial for vision tasks in extremely low-light environments such as covert imaging, biological imaging and space exploration. The single-photon image sensor can be scaled up to construct more complex neural networks, enabling more complex real-time vision tasks with high sensitivity.

Suggested Citation

  • Yanqiu Guan & Haochen Li & Yi Zhang & Yuchen Qiu & Labao Zhang & Xiangyang Ji & Hao Wang & Qi Chen & Liang Ma & Xiaohan Wang & Zhuolin Yang & Xuecou Tu & Qingyuan Zhao & Xiaoqing Jia & Jian Chen & Lin, 2025. "Photon-efficient camera with in-sensor computing," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58501-2
    DOI: 10.1038/s41467-025-58501-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58501-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58501-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dohyun Kwak & Dmitry K. Polyushkin & Thomas Mueller, 2023. "In-sensor computing using a MoS2 photodetector with programmable spectral responsivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Seokhyeong Lee & Ruoming Peng & Changming Wu & Mo Li, 2022. "Programmable black phosphorus image sensor for broadband optoelectronic edge computing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    4. Rengjian Yu & Lihua He & Changsong Gao & Xianghong Zhang & Enlong Li & Tailiang Guo & Wenwu Li & Huipeng Chen, 2022. "Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. B. G. Oripov & D. S. Rampini & J. Allmaras & M. D. Shaw & S. W. Nam & B. Korzh & A. N. McCaughan, 2023. "A superconducting nanowire single-photon camera with 400,000 pixels," Nature, Nature, vol. 622(7984), pages 730-734, October.
    6. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Peter A. Morris & Reuben S. Aspden & Jessica E. C. Bell & Robert W. Boyd & Miles J. Padgett, 2015. "Imaging with a small number of photons," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Jiang & Yinzhu Chen & Wenyu Guo & Yan Zhang & Rigui Zhou & Mile Gu & Fan Zhong & Zhenhua Ni & Junpeng Lu & Cheng-Wei Qiu & Weibo Gao, 2024. "Metasurface-enabled broadband multidimensional photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Haoxin Huang & Shuhui Shi & Jiajia Zha & Yunpeng Xia & Huide Wang & Peng Yang & Long Zheng & Songcen Xu & Wei Wang & Yi Ren & Yongji Wang & Ye Chen & Hau Ping Chan & Johnny C. Ho & Yang Chai & Zhongru, 2025. "In-sensor compressing via programmable optoelectronic sensors based on van der Waals heterostructures for intelligent machine vision," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Yuchen Cai & Jia Yang & Yutang Hou & Feng Wang & Lei Yin & Shuhui Li & Yanrong Wang & Tao Yan & Shan Yan & Xueying Zhan & Jun He & Zhenxing Wang, 2025. "8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Lei Tong & Yali Bi & Yilun Wang & Kai Peng & Xinyu Huang & Wei Ju & Zhuiri Peng & Zheng Li & Langlang Xu & Runfeng Lin & Xiangxiang Yu & Wenhao Shi & Hui Yu & Huajun Sun & Kanhao Xue & Qiang He & Ming, 2024. "Programmable nonlinear optical neuromorphic computing with bare 2D material MoS2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Ming Deng & Ziqing Li & Shiyuan Liu & Xiaosheng Fang & Limin Wu, 2024. "Wafer-scale integration of two-dimensional perovskite oxides towards motion recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Haipeng Lin & Jiali Ou & Zhen Fan & Xiaobing Yan & Wenjie Hu & Boyuan Cui & Jikang Xu & Wenjie Li & Zhiwei Chen & Biao Yang & Kun Liu & Linyuan Mo & Meixia Li & Xubing Lu & Guofu Zhou & Xingsen Gao & , 2025. "In situ training of an in-sensor artificial neural network based on ferroelectric photosensors," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    8. Xinxin Gao & Ze Gu & Qian Ma & Bao Jie Chen & Kam-Man Shum & Wen Yi Cui & Jian Wei You & Tie Jun Cui & Chi Hou Chan, 2024. "Terahertz spoof plasmonic neural network for diffractive information recognition and processing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Zhuiri Peng & Lei Tong & Wenhao Shi & Langlang Xu & Xinyu Huang & Zheng Li & Xiangxiang Yu & Xiaohan Meng & Xiao He & Shengjie Lv & Gaochen Yang & Hao Hao & Tian Jiang & Xiangshui Miao & Lei Ye, 2024. "Multifunctional human visual pathway-replicated hardware based on 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Dohyun Kwak & Dmitry K. Polyushkin & Thomas Mueller, 2023. "In-sensor computing using a MoS2 photodetector with programmable spectral responsivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Xun Han & Juan Tao & Yegang Liang & Feng Guo & Zhangsheng Xu & Wenqiang Wu & Jiahui Tong & Mengxiao Chen & Caofeng Pan & Jianhua Hao, 2024. "Ultraweak light-modulated heterostructure with bidirectional photoresponse for static and dynamic image perception," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Zhixin Yao & Huifeng Tian & U. Sasaki & Huacong Sun & Jingyi Hu & Guodong Xue & Ye Seul Jung & Ruijie Li & Zhenjiang Li & PeiChi Liao & Yihan Wang & Lina Yang Zhang & Ge Yin & Xuanyu Zhang & Yijie Luo, 2025. "Transferrable, wet-chemistry-derived high-k amorphous metal oxide dielectrics for two-dimensional electronic devices," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    15. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Ling Li & Shasha Li & Wenhai Wang & Jielian Zhang & Yiming Sun & Qunrui Deng & Tao Zheng & Jianting Lu & Wei Gao & Mengmeng Yang & Hanyu Wang & Yuan Pan & Xueting Liu & Yani Yang & Jingbo Li & Nengjie, 2024. "Adaptative machine vision with microsecond-level accurate perception beyond human retina," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Ge Li & Donggang Xie & Qinghua Zhang & Mingzhen Zhang & Zhuohui Liu & Zheng Wang & Jiahui Xie & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2025. "Interface-engineered non-volatile visible-blind photodetector for in-sensor computing," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Xiaoyun Yuan & Yong Wang & Zhihao Xu & Tiankuang Zhou & Lu Fang, 2023. "Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58501-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.