IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60556-0.html
   My bibliography  Save this article

Cell-specific mechanisms drive connectivity across the time course of Huntington’s disease

Author

Listed:
  • Carlos Estevez-Fraga

    (University College London)

  • Isaac Sebenius

    (University of Cambridge
    University of Cambridge)

  • Justine Y. Hansen

    (McGill University)

  • Benjamin Hänisch

    (University Hospital Tübingen
    German Centre for Mental Health
    Max Planck School of Cognition)

  • Paul Zeun

    (Southampton General Hospital)

  • Rachael I. Scahill

    (University College London)

  • Sarah Gregory

    (University College London)

  • Eilanoir B. Johnson

    (Department for Science Innovation and Technology)

  • Edward J. Wild

    (University College London)

  • Lauren M. Byrne

    (University College London)

  • Alexandra Durr

    (Pitié-Salpêtrière University Hospital)

  • Bernhard Landwehrmeyer

    (University of Ulm)

  • Blair R. Leavitt

    (University of British Columbia
    UBC Children’s Hospital)

  • Bratislav Misic

    (McGill University)

  • Sofie Louise Valk

    (Research Centre Jülich
    Heinrich Heine University Düsseldorf
    Max Planck Institute for Human Cognitive and Brain Sciences)

  • Geraint Rees

    (University College London)

  • Sarah J. Tabrizi

    (University College London)

  • Peter McColgan

    (University College London
    F. Hoffmann-La Roche Ltd.)

Abstract

Hyperconnectivity in functional brain networks occurs decades before disease onset in Huntington’s disease. However, the biological mechanisms remain unknown. We investigate connectivity in Huntington’s disease using Morphometric INverse Divergence (MIND) in three Huntington’s disease cohorts (N = 512) spanning from two decades before the onset of symptoms through to functional decline. Here, we identify stage-specific profiles, with hyperconnectivity 22 years from predicted motor onset, progressing to hypoconnectivity through the late premanifest and manifest stages, showing that hypoconnectivity is correlated with neurofilament light concentrations. To understand the biological mechanisms, we investigate associations with cortical organization principles including disease epicentres and cell-autonomous systems, in particular neurotransmitter distribution. The contribution from disease epicentres is limited to late premanifest while cell-autonomous associations are demonstrated across the Huntington’s disease lifespan. Specific relationships to cholinergic and serotoninergic systems localized to granular and infragranular cortical layers are identified, consistent with serotoninergic layer 5a neuronal vulnerability previously identified in post-mortem brains.

Suggested Citation

  • Carlos Estevez-Fraga & Isaac Sebenius & Justine Y. Hansen & Benjamin Hänisch & Paul Zeun & Rachael I. Scahill & Sarah Gregory & Eilanoir B. Johnson & Edward J. Wild & Lauren M. Byrne & Alexandra Durr , 2025. "Cell-specific mechanisms drive connectivity across the time course of Huntington’s disease," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60556-0
    DOI: 10.1038/s41467-025-60556-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60556-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60556-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Hawrylycz & Ed S. Lein & Angela L. Guillozet-Bongaarts & Elaine H. Shen & Lydia Ng & Jeremy A. Miller & Louie N. van de Lagemaat & Kimberly A. Smith & Amanda Ebbert & Zackery L. Riley & Chr, 2012. "An anatomically comprehensive atlas of the adult human brain transcriptome," Nature, Nature, vol. 489(7416), pages 391-399, September.
    2. repec:plo:pbio00:3000495 is not listed on IDEAS
    3. C. Anthony Altar & Ning Cai & Tricia Bliven & Melissa Juhasz & James M. Conner & Ann L. Acheson & Ronald M. Lindsay & Stanley J. Wiegand, 1997. "Anterograde transport of brain-derived neurotrophic factor and its role in the brain," Nature, Nature, vol. 389(6653), pages 856-860, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junjiao Feng & Liang Zhang & Chunhui Chen & Jintao Sheng & Zhifang Ye & Kanyin Feng & Jing Liu & Ying Cai & Bi Zhu & Zhaoxia Yu & Chuansheng Chen & Qi Dong & Gui Xue, 2022. "A cognitive neurogenetic approach to uncovering the structure of executive functions," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Yash Patel & Jean Shin & Eeva Sliz & Ariana Tang & Aniket Mishra & Rui Xia & Edith Hofer & Hema Sekhar Reddy Rajula & Ruiqi Wang & Frauke Beyer & Katrin Horn & Max Riedl & Jing Yu & Henry Völzke & Rob, 2024. "Genetic risk factors underlying white matter hyperintensities and cortical atrophy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Sungyong Um & Bin Zhang & Sunil Wattal & Youngjin Yoo, 2023. "Software Components and Product Variety in a Platform Ecosystem: A Dynamic Network Analysis of WordPress," Information Systems Research, INFORMS, vol. 34(4), pages 1339-1374, December.
    4. Meeli Mullari & Nicolas Fossat & Niels H. Skotte & Andrea Asenjo-Martinez & David T. Humphreys & Jens Bukh & Agnete Kirkeby & Troels K. H. Scheel & Michael L. Nielsen, 2023. "Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington’s disease," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Tharick A. Pascoal & Mira Chamoun & Elad Lax & Hsiao-Ying Wey & Monica Shin & Kok Pin Ng & Min Su Kang & Sulantha Mathotaarachchi & Andrea L. Benedet & Joseph Therriault & Firoza Z. Lussier & Frederic, 2022. "[11C]Martinostat PET analysis reveals reduced HDAC I availability in Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Maria Osetrova & Anna Tkachev & Waltraud Mair & Patricia Guijarro Larraz & Olga Efimova & Ilia Kurochkin & Elena Stekolshchikova & Nickolay Anikanov & Juat Chin Foo & Amaury Cazenave-Gassiot & Aleksan, 2024. "Lipidome atlas of the adult human brain," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Vincent Bazinet & Justine Y. Hansen & Reinder Vos de Wael & Boris C. Bernhardt & Martijn P. Heuvel & Bratislav Misic, 2023. "Assortative mixing in micro-architecturally annotated brain connectomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Lynne Krohn & Karl Heilbron & Cornelis Blauwendraat & Regina H. Reynolds & Eric Yu & Konstantin Senkevich & Uladzislau Rudakou & Mehrdad A. Estiar & Emil K. Gustavsson & Kajsa Brolin & Jennifer A. Rus, 2022. "Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Svenja Küchenhoff & Şeyma Bayrak & Rachel G. Zsido & Amin Saberi & Boris C. Bernhardt & Susanne Weis & H. Lina Schaare & Julia Sacher & Simon Eickhoff & Sofie L. Valk, 2024. "Relating sex-bias in human cortical and hippocampal microstructure to sex hormones," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Jua Lee & Dongtan Yin & Jaekyung Yun & Minsoo Kim & Seong-Wook Kim & Heeyoun Hwang & Ji Eun Park & Boyoung Lee & C. Justin Lee & Hee-Sup Shin & Hyun Joo An, 2024. "Deciphering mouse brain spatial diversity via glyco-lipidomic mapping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. repec:plo:pbio00:3000495 is not listed on IDEAS
    14. Golia Shafiei & Ben D. Fulcher & Bradley Voytek & Theodore D. Satterthwaite & Sylvain Baillet & Bratislav Misic, 2023. "Neurophysiological signatures of cortical micro-architecture," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Aleksandr Talishinsky & Jonathan Downar & Petra E. Vértes & Jakob Seidlitz & Katharine Dunlop & Charles J. Lynch & Heather Whalley & Andrew McIntosh & Fidel Vila-Rodriguez & Zafiris J. Daskalakis & Da, 2022. "Regional gene expression signatures are associated with sex-specific functional connectivity changes in depression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    16. Marco Pagani & Noemi Barsotti & Alice Bertero & Stavros Trakoshis & Laura Ulysse & Andrea Locarno & Ieva Miseviciute & Alessia De Felice & Carola Canella & Kaustubh Supekar & Alberto Galbusera & Vinod, 2021. "mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    17. Biao Zhang & Shuqin Zhang & Shihua Zhang, 2024. "Whole brain alignment of spatial transcriptomics between humans and mice with BrainAlign," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Sheng Wang & Belinda Wang & Vanessa Drury & Sam Drake & Nawei Sun & Hasan Alkhairo & Juan Arbelaez & Clif Duhn & Vanessa H. Bal & Kate Langley & Joanna Martin & Pieter J. Hoekstra & Andrea Dietrich & , 2023. "Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Ada J. S. Chan & Worrawat Engchuan & Miriam S. Reuter & Zhuozhi Wang & Bhooma Thiruvahindrapuram & Brett Trost & Thomas Nalpathamkalam & Carol Negrijn & Sylvia Lamoureux & Giovanna Pellecchia & Rohan , 2022. "Genome-wide rare variant score associates with morphological subtypes of autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Yuanyuan Luan & Yan Fang & Lin Jiang & Yuehui Ma & Shangjie Wu & Junwen Zhou & Yabin Pu & Qianjun Zhao & Xiaohong He, 2022. "Landscape of Global Gene Expression Reveals Distinctive Tissue Characteristics in Bactrian Camels ( Camelus bactrianus )," Agriculture, MDPI, vol. 12(7), pages 1-15, July.
    21. Xiaolu Kong & Ru Kong & Csaba Orban & Peng Wang & Shaoshi Zhang & Kevin Anderson & Avram Holmes & John D. Murray & Gustavo Deco & Martijn Heuvel & B. T. Thomas Yeo, 2021. "Sensory-motor cortices shape functional connectivity dynamics in the human brain," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60556-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.