IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60121-9.html
   My bibliography  Save this article

Spectral physical unclonable functions: downscaling randomness with multi-resonant hybrid particles

Author

Listed:
  • Martin Sandomirskii

    (ITMO University)

  • Elena Petrova

    (ITMO University)

  • Pavel Kustov

    (ITMO University)

  • Lev Chizhov

    (ITMO University)

  • Artem Larin

    (ITMO University)

  • Stéphanie Bruyère

    (Université de Lorraine, CNRS, IJL)

  • Vitaly Yaroshenko

    (ITMO University)

  • Eduard Ageev

    (ITMO University)

  • Pavel Belov

    (ITMO University
    New Uzbekistan University)

  • Dmitry Zuev

    (ITMO University)

Abstract

Optical physical unclonable functions (PUFs) are state-of-the-art in advanced security applications. Fabricated with inherent randomness, they generate fingerprint-like responses, serving as trust anchors for material assets. However, the existing PUFs, typically reliant on microscopic spatial features, face increasing threats from rapidly advancing microscale manipulation techniques. Here, we present novel PUFs based on random nanoscale variations within multi-resonant gold-silicon particles. These inevitable structural differences, coupled with strong optical resonances, provide unique spectral features in particles’ photoluminescence (PL), which we encode as unclonable keys. Our approach surpasses the shortcomings of diffraction-limited designs, additionally offering a multi-functional platform for robust authentication of goods and verification of individuals. We demonstrate two security label models based on PL mapping and direct PL imaging, as well as a concept for the first all-optical one-time password verification token with an exceptionally high storage density of unique information. This work paves the way toward nanoscale-enabled unclonability, bringing enhanced security for hardware-based cryptography, personalized access control, and cutting-edge anti-counterfeiting.

Suggested Citation

  • Martin Sandomirskii & Elena Petrova & Pavel Kustov & Lev Chizhov & Artem Larin & Stéphanie Bruyère & Vitaly Yaroshenko & Eduard Ageev & Pavel Belov & Dmitry Zuev, 2025. "Spectral physical unclonable functions: downscaling randomness with multi-resonant hybrid particles," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60121-9
    DOI: 10.1038/s41467-025-60121-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60121-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60121-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Schiansky & Julia Kalb & Esther Sztatecsny & Marie-Christine Roehsner & Tobias Guggemos & Alessandro Trenti & Mathieu Bozzio & Philip Walther, 2023. "Demonstration of quantum-digital payments," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Yuqing Gu & Chang He & Yuqing Zhang & Li Lin & Benjamin David Thackray & Jian Ye, 2020. "Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    3. Jung Woo Leem & Min Seok Kim & Seung Ho Choi & Seong-Ryul Kim & Seong-Wan Kim & Young Min Song & Robert J. Young & Young L. Kim, 2020. "Edible unclonable functions," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Kun Wang & Jianwei Shi & Wenxuan Lai & Qiang He & Jun Xu & Zhenyi Ni & Xinfeng Liu & Xiaodong Pi & Deren Yang, 2024. "All-silicon multidimensionally-encoded optical physical unclonable functions for integrated circuit anti-counterfeiting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. A. Di Falco & V. Mazzone & A. Cruz & A. Fratalocchi, 2019. "Perfect secrecy cryptography via mixing of chaotic waves in irreversible time-varying silicon chips," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    6. Min Seok Kim & Gil Ju Lee & Jung Woo Leem & Seungho Choi & Young L. Kim & Young Min Song, 2022. "Revisiting silk: a lens-free optical physical unclonable function," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Peter Schiansky & Julia Kalb & Esther Sztatecsny & Marie-Christine Roehsner & Tobias Guggemos & Alessandro Trenti & Mathieu Bozzio & Philip Walther, 2023. "Author Correction: Demonstration of quantum-digital payments," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    8. Chengyun Zhang & Yi Xu & Jin Liu & Juntao Li & Jin Xiang & Hui Li & Jinxiang Li & Qiaofeng Dai & Sheng Lan & Andrey E. Miroshnichenko, 2018. "Lighting up silicon nanoparticles with Mie resonances," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    9. Tongtong Zhang & Lingzhi Wang & Jing Wang & Zhongqiang Wang & Madhav Gupta & Xuyun Guo & Ye Zhu & Yau Chuen Yiu & Tony K. C. Hui & Yan Zhou & Can Li & Dangyuan Lei & Kwai Hei Li & Xinqiang Wang & Qi W, 2023. "Multimodal dynamic and unclonable anti-counterfeiting using robust diamond microparticles on heterogeneous substrate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Wang & Jianwei Shi & Wenxuan Lai & Qiang He & Jun Xu & Zhenyi Ni & Xinfeng Liu & Xiaodong Pi & Deren Yang, 2024. "All-silicon multidimensionally-encoded optical physical unclonable functions for integrated circuit anti-counterfeiting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Junfang Zhang & Rong Tan & Yuxin Liu & Matteo Albino & Weinan Zhang & Molly M. Stevens & Felix F. Loeffler, 2024. "Printed smart devices for anti-counterfeiting allowing precise identification with household equipment," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Ningfei Sun & Ziyu Chen & Yanke Wang & Shu Wang & Yong Xie & Qian Liu, 2023. "Random fractal-enabled physical unclonable functions with dynamic AI authentication," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Srinivas Gandla & Jinsik Yoon & Cheol‑Woong Yang & HyungJune Lee & Wook Park & Sunkook Kim, 2024. "Random laser ablated tags for anticounterfeiting purposes and towards physically unclonable functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Wang, Qingle & Liu, Jiacheng & Li, Guodong & Han, Yunguang & Zhou, Yuqian & Cheng, Long, 2024. "A measurement-device-independent quantum secure digital payment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
    6. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Davide Pierangeli & Claudio Conti, 2023. "Single-shot polarimetry of vector beams by supervised learning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Junfang Zhang & Adam Creamer & Kai Xie & Jiaqing Tang & Luke Salter & Jonathan P. Wojciechowski & Molly M. Stevens, 2025. "Bright and stable anti-counterfeiting devices with independent stochastic processes covering multiple length scales," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Minati, Ludovico & Tokgoz, Korkut Kaan & Ito, Hiroyuki, 2022. "Distributed sensing via the ensemble spectra of uncoupled electronic chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Anne M. Luescher & Andreas L. Gimpel & Wendelin J. Stark & Reinhard Heckel & Robert N. Grass, 2024. "Chemical unclonable functions based on operable random DNA pools," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Veinidis, Christos N. & Akriotou, Marialena & Kondi, Alex & Papia, Efi-Maria & Constantoudis, Vassilios & Syvridis, Dimitris, 2025. "Complexity analysis of challenges and speckle patterns in an Optical Physical Unclonable Function," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    12. Mingcheng Panmai & Jin Xiang & Shulei Li & Xiaobing He & Yuhao Ren & Miaoxuan Zeng & Juncong She & Juntao Li & Sheng Lan, 2022. "Highly efficient nonlinear optical emission from a subwavelength crystalline silicon cuboid mediated by supercavity mode," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Tongtong Zhang & Lingzhi Wang & Jing Wang & Zhongqiang Wang & Madhav Gupta & Xuyun Guo & Ye Zhu & Yau Chuen Yiu & Tony K. C. Hui & Yan Zhou & Can Li & Dangyuan Lei & Kwai Hei Li & Xinqiang Wang & Qi W, 2023. "Multimodal dynamic and unclonable anti-counterfeiting using robust diamond microparticles on heterogeneous substrate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Irdi Murataj & Chiara Magosso & Stefano Carignano & Matteo Fretto & Federico Ferrarese Lupi & Gianluca Milano, 2024. "Artificial fingerprints engraved through block-copolymers as nanoscale physical unclonable functions for authentication and identification," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60121-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.