IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59631-3.html
   My bibliography  Save this article

Structural reconfiguration of interacting multi-particle systems through parametric pumping

Author

Listed:
  • Qinghao Mao

    (University of Chicago
    University of Chicago)

  • Brady Wu

    (University of Chicago
    University of Chicago)

  • Bryan VanSaders

    (University of Chicago)

  • Heinrich M. Jaeger

    (University of Chicago
    University of Chicago)

Abstract

Processes from crystallization to protein folding to micro-robot self-assembly rely on achieving specific configurations of microscopic objects with short-ranged interactions. However, the small scales and large configuration spaces of such multi-body systems render targeted control challenging. Inspired by optical pumping manipulation of quantum states, we develop a method using parametric pumping to selectively excite and destroy undesired structures to populate the targeted one. This method does not rely on free energy considerations and therefore works for systems with non-conservative and even non-reciprocal interactions, which we demonstrate with an acoustically levitated five-particle system in the Rayleigh limit. With results from experiments and simulations on three additional systems ranging up to hundreds of particles, we show the generality of this method, offering a new path for non-invasive manipulation of strongly interacting multi-particle systems.

Suggested Citation

  • Qinghao Mao & Brady Wu & Bryan VanSaders & Heinrich M. Jaeger, 2025. "Structural reconfiguration of interacting multi-particle systems through parametric pumping," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59631-3
    DOI: 10.1038/s41467-025-59631-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59631-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59631-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59631-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.