IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59591-8.html
   My bibliography  Save this article

Impaired ketogenesis in Leydig Cells drives testicular aging

Author

Listed:
  • Congyuan Liu

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Hao Peng

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Jiajie Yu

    (Sun Yat-sen University)

  • Peng Luo

    (Sun Yat-sen University, The Key Laboratory for Reproductive Medicine of Guangdong Province)

  • Chuanfeng Xiong

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Hong Chen

    (Shenzhen Qianhai Shekou Free Trade Zone Hospital
    Chinese Academy of Sciences)

  • Hang Fan

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Yuanchen Ma

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Wangsheng Ou

    (Sun Yat-sen University)

  • Suyuan Zhang

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Cuifeng Yang

    (Sun Yat-sen University)

  • Lerong Zhao

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Yuchen Zhang

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Xiaolu Guo

    (Shenzhen Qianhai Shekou Free Trade Zone Hospital
    Chinese Academy of Sciences)

  • Qiong Ke

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Tao Wang

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Chunhua Deng

    (Sun Yat-sen University)

  • Weiqiang Li

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Andy Peng Xiang

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Kai Xia

    (Sun Yat-sen University
    Sun Yat-sen University)

Abstract

Testicular aging commonly leads to testosterone deficiency and impaired spermatogenesis, yet the underlying mechanisms remain elusive. Here, we show that Leydig cells are particularly vulnerable to aging processes in testis. Single-cell RNA sequencing identifies the expression of Hmgcs2, the gene encoding rate-limiting enzyme of ketogenesis, decreases significantly in Leydig cells from aged mice. Additionally, the concentrations of ketone bodies β-hydroxybutyric acid and acetoacetic acid in young testes are substantially higher than that in serum, but significantly diminish in aged testes. Silencing of Hmgcs2 in young Leydig cells drives cell senescence and accelerated testicular aging. Mechanistically, β-hydroxybutyric acid upregulates the expression of Foxo3a by facilitating histone acetylation, thereby mitigating Leydig cells senescence and promoting testosterone production. Consistently, enhanced ketogenesis by genetic manipulation or oral β-hydroxybutyric acid supplementation alleviates Leydig cells senescence and ameliorates testicular aging in aged mice. These findings highlight defective ketogenesis as a pivotal factor in testicular aging, suggesting potential therapeutic avenues for addressing age-related testicular dysfunction.

Suggested Citation

  • Congyuan Liu & Hao Peng & Jiajie Yu & Peng Luo & Chuanfeng Xiong & Hong Chen & Hang Fan & Yuanchen Ma & Wangsheng Ou & Suyuan Zhang & Cuifeng Yang & Lerong Zhao & Yuchen Zhang & Xiaolu Guo & Qiong Ke , 2025. "Impaired ketogenesis in Leydig Cells drives testicular aging," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59591-8
    DOI: 10.1038/s41467-025-59591-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59591-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59591-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weiqi Zhang & Shu Zhang & Pengze Yan & Jie Ren & Moshi Song & Jingyi Li & Jinghui Lei & Huize Pan & Si Wang & Xibo Ma & Shuai Ma & Hongyu Li & Fei Sun & Haifeng Wan & Wei Li & Piu Chan & Qi Zhou & Gua, 2020. "A single-cell transcriptomic landscape of primate arterial aging," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Jan M. van Deursen, 2014. "The role of senescent cells in ageing," Nature, Nature, vol. 509(7501), pages 439-446, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanako Matsumoto & Yuki Akieda & Yukinari Haraoka & Naoki Hirono & Hiroshi Sasaki & Tohru Ishitani, 2024. "Foxo3-mediated physiological cell competition ensures robust tissue patterning throughout vertebrate development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Catherine M. Francis & Matthias E. Futschik & Jian Huang & Wenjia Bai & Muralidharan Sargurupremraj & Alexander Teumer & Monique M. B. Breteler & Enrico Petretto & Amanda S. R. Ho & Philippe Amouyel &, 2022. "Genome-wide associations of aortic distensibility suggest causality for aortic aneurysms and brain white matter hyperintensities," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. He Cao & Panpan Yang & Jia Liu & Yan Shao & Honghao Li & Pinglin Lai & Hong Wang & Anling Liu & Bin Guo & Yujin Tang & Xiaochun Bai & Kai Li, 2023. "MYL3 protects chondrocytes from senescence by inhibiting clathrin-mediated endocytosis and activating of Notch signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Chen Zhao & Keyu Kong & Pengcheng Liu & Xuzhuo Chen & Kewei Rong & Pu Zhang & Lei Wang & Xiaoqing Wang, 2025. "Regulating obesity-induced osteoarthritis by targeting p53-FOXO3, osteoclast ferroptosis, and mesenchymal stem cell adipogenesis," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    5. Moore, Patrick V. & Bennett, Kathleen & Normand, Charles, 2017. "Counting the time lived, the time left or illness? Age, proximity to death, morbidity and prescribing expenditures," Social Science & Medicine, Elsevier, vol. 184(C), pages 1-14.
    6. Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Jiao Qu & Fa Yang & Tao Zhu & Yingshuo Wang & Wen Fang & Yan Ding & Xue Zhao & Xianjia Qi & Qiangmin Xie & Ming Chen & Qiang Xu & Yicheng Xie & Yang Sun & Dijun Chen, 2022. "A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Kaushik Bhattacharya & Samarpan Maiti & Szabolcs Zahoran & Lorenz Weidenauer & Dina Hany & Diana Wider & Lilia Bernasconi & Manfredo Quadroni & Martine Collart & Didier Picard, 2022. "Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Fábio J. Ferreira & Mafalda Galhardo & João M. Nogueira & Joana Teixeira & Elsa Logarinho & José Bessa, 2025. "FOXM1 expression reverts aging chromatin profiles through repression of the senescence-associated pioneer factor AP-1," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    11. Gaocai Li & Liang Ma & Shujie He & Rongjin Luo & Bingjin Wang & Weifeng Zhang & Yu Song & Zhiwei Liao & Wencan Ke & Qian Xiang & Xiaobo Feng & Xinghuo Wu & Yukun Zhang & Kun Wang & Cao Yang, 2022. "WTAP-mediated m6A modification of lncRNA NORAD promotes intervertebral disc degeneration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Kuo Du & David S. Umbaugh & Liuyang Wang & Ji Hye Jun & Rajesh K. Dutta & Seh Hoon Oh & Niansheng Ren & Qiaojuan Zhang & Dennis C. Ko & Ana Ferreira & Jon Hill & Guannan Gao & Steven S. Pullen & Vaibh, 2025. "Targeting senescent hepatocytes for treatment of metabolic dysfunction-associated steatotic liver disease and multi-organ dysfunction," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    13. José Luis García-Giménez & Salvador Mena-Molla & Francisco José Tarazona-Santabalbina & Jose Viña & Mari Carmen Gomez-Cabrera & Federico V. Pallardó, 2021. "Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    14. Kai Shen & Hao Zhou & Qiang Zuo & Yue Gu & Jiangqi Cheng & Kai Yan & Huiwen Zhang & Huanghe Song & Wenwei Liang & Jinchun Zhou & Jiuxiang Liu & Feng Liu & Chenjun Zhai & Weimin Fan, 2024. "GATD3A-deficiency-induced mitochondrial dysfunction facilitates senescence of fibroblast-like synoviocytes and osteoarthritis progression," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Ines Sturmlechner & Chance C. Sine & Karthik B. Jeganathan & Cheng Zhang & Raul O. Fierro Velasco & Darren J. Baker & Hu Li & Jan M. Deursen, 2022. "Senescent cells limit p53 activity via multiple mechanisms to remain viable," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Mark A. Sanborn & Xinge Wang & Shang Gao & Yang Dai & Jalees Rehman, 2025. "Unveiling the cell-type-specific landscape of cellular senescence through single-cell transcriptomics using SenePy," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    17. Xu Zhang & Vesselina M. Pearsall & Chase M. Carver & Elizabeth J. Atkinson & Benjamin D. S. Clarkson & Ethan M. Grund & Michelle Baez-Faria & Kevin D. Pavelko & Jennifer M. Kachergus & Thomas A. White, 2022. "Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Sara Rojas-Vázquez & Beatriz Lozano-Torres & Alba García-Fernández & Irene Galiana & Ana Perez-Villalba & Pablo Martí-Rodrigo & M. José Palop & Marcia Domínguez & Mar Orzáez & Félix Sancenón & Juan F., 2024. "A renal clearable fluorogenic probe for in vivo β-galactosidase activity detection during aging and senolysis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Phillip S. Gross & Violeta Durán-Laforet & Lana T. Ho & George S. Melchor & Sameera Zia & Zeeba Manavi & William E. Barclay & Sung Hyun Lee & Nataliia Shults & Sean Selva & Enrique Alvarez & Jason R. , 2025. "Senescent-like microglia limit remyelination through the senescence associated secretory phenotype," Nature Communications, Nature, vol. 16(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59591-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.