IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33916-3.html
   My bibliography  Save this article

Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life

Author

Listed:
  • Kaushik Bhattacharya

    (University of Geneva)

  • Samarpan Maiti

    (University of Geneva)

  • Szabolcs Zahoran

    (University of Geneva)

  • Lorenz Weidenauer

    (University of Lausanne)

  • Dina Hany

    (University of Geneva)

  • Diana Wider

    (University of Geneva)

  • Lilia Bernasconi

    (University of Geneva)

  • Manfredo Quadroni

    (University of Lausanne)

  • Martine Collart

    (University of Geneva)

  • Didier Picard

    (University of Geneva)

Abstract

The cytosolic molecular chaperone Hsp90 is essential for eukaryotic life. Although reduced Hsp90 levels correlate with aging, it was unknown whether eukaryotic cells and organisms can tune the basal Hsp90 levels to alleviate physiologically accumulated stress. We have investigated whether and how mice adapt to the deletion of three out of four alleles of the two genes encoding cytosolic Hsp90, with one Hsp90β allele being the only remaining one. While the vast majority of such mouse embryos die during gestation, survivors apparently manage to increase their Hsp90β protein to at least wild-type levels. Our studies reveal an internal ribosome entry site in the 5’ untranslated region of the Hsp90β mRNA allowing translational reprogramming to compensate for the genetic loss of Hsp90 alleles and in response to stress. We find that the minimum amount of total Hsp90 required to support viability of mammalian cells and organisms is 50–70% of what is normally there. Those that fail to maintain a threshold level are subject to accelerated senescence, proteostatic collapse, and ultimately death. Therefore, considering that Hsp90 levels can be reduced ≥100-fold in the unicellular budding yeast, critical threshold levels of Hsp90 have markedly increased during eukaryotic evolution.

Suggested Citation

  • Kaushik Bhattacharya & Samarpan Maiti & Szabolcs Zahoran & Lorenz Weidenauer & Dina Hany & Diana Wider & Lilia Bernasconi & Manfredo Quadroni & Martine Collart & Didier Picard, 2022. "Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33916-3
    DOI: 10.1038/s41467-022-33916-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33916-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33916-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kaushik Bhattacharya & Lorenz Weidenauer & Tania Morán Luengo & Ellis C. Pieters & Pablo C. Echeverría & Lilia Bernasconi & Diana Wider & Yashar Sadian & Margreet B. Koopman & Matthieu Villemin & Chri, 2020. "The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation," Nature Communications, Nature, vol. 11(1), pages 1-21, December.
    2. Suzanne L. Rutherford & Susan Lindquist, 1998. "Hsp90 as a capacitor for morphological evolution," Nature, Nature, vol. 396(6709), pages 336-342, November.
    3. Jan M. van Deursen, 2014. "The role of senescent cells in ageing," Nature, Nature, vol. 509(7501), pages 439-446, May.
    4. Anna Rodina & Tai Wang & Pengrong Yan & Erica DaGama Gomes & Mark P. S. Dunphy & Nagavarakishore Pillarsetty & John Koren & John F. Gerecitano & Tony Taldone & Hongliang Zong & Eloisi Caldas-Lopes & M, 2016. "The epichaperome is an integrated chaperome network that facilitates tumour survival," Nature, Nature, vol. 538(7625), pages 397-401, October.
    5. Björn Schwanhäusser & Dorothea Busse & Na Li & Gunnar Dittmar & Johannes Schuchhardt & Jana Wolf & Wei Chen & Matthias Selbach, 2011. "Global quantification of mammalian gene expression control," Nature, Nature, vol. 473(7347), pages 337-342, May.
    6. Jun Zhou & Ji Wan & Xiangwei Gao & Xingqian Zhang & Samie R. Jaffrey & Shu-Bing Qian, 2015. "Dynamic m6A mRNA methylation directs translational control of heat shock response," Nature, Nature, vol. 526(7574), pages 591-594, October.
    7. Alejandro Burga & M. Olivia Casanueva & Ben Lehner, 2011. "Predicting mutation outcome from early stochastic variation in genetic interaction partners," Nature, Nature, vol. 480(7376), pages 250-253, December.
    8. Simon C. Johnson & Peter S. Rabinovitch & Matt Kaeberlein, 2013. "mTOR is a key modulator of ageing and age-related disease," Nature, Nature, vol. 493(7432), pages 338-345, January.
    9. Kevin C. Stein & Fabián Morales-Polanco & Joris Lienden & T. Kelly Rainbolt & Judith Frydman, 2022. "Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis," Nature, Nature, vol. 601(7894), pages 637-642, January.
    10. Weili Miao & Lin Li & Yonghui Zhao & Xiaoxia Dai & Xuemei Chen & Yinsheng Wang, 2019. "HSP90 inhibitors stimulate DNAJB4 protein expression through a mechanism involving N6-methyladenosine," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    11. Matthew J. Yousefzadeh & Rafael R. Flores & Yi Zhu & Zoe C. Schmiechen & Robert W. Brooks & Christy E. Trussoni & Yuxiang Cui & Luise Angelini & Kyoo-A Lee & Sara J. McGowan & Adam L. Burrack & Dong W, 2021. "An aged immune system drives senescence and ageing of solid organs," Nature, Nature, vol. 594(7861), pages 100-105, June.
    12. Heike Fuhrmann-Stroissnigg & Yuan Yuan Ling & Jing Zhao & Sara J. McGowan & Yi Zhu & Robert W. Brooks & Diego Grassi & Siobhan Q. Gregg & Jennifer L. Stripay & Akaitz Dorronsoro & Lana Corbo & Priscil, 2017. "Identification of HSP90 inhibitors as a novel class of senolytics," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Zhang & Vesselina M. Pearsall & Chase M. Carver & Elizabeth J. Atkinson & Benjamin D. S. Clarkson & Ethan M. Grund & Michelle Baez-Faria & Kevin D. Pavelko & Jennifer M. Kachergus & Thomas A. White, 2022. "Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Bryan Sands & Soo Yun & Alexander R. Mendenhall, 2021. "Introns control stochastic allele expression bias," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. D. Blanco-Obregon & K. El Marzkioui & F. Brutscher & V. Kapoor & L. Valzania & D. S. Andersen & J. Colombani & S. Narasimha & D. McCusker & P. Léopold & L. Boulan, 2022. "A Dilp8-dependent time window ensures tissue size adjustment in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Gábor Csárdi & Alexander Franks & David S Choi & Edoardo M Airoldi & D Allan Drummond, 2015. "Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast," PLOS Genetics, Public Library of Science, vol. 11(5), pages 1-32, May.
    6. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Lei Shen & Xiaokuang Ma & Yuanyuan Wang & Zhihao Wang & Yi Zhang & Hoang Quoc Hai Pham & Xiaoqun Tao & Yuehua Cui & Jing Wei & Dimitri Lin & Tharindumala Abeywanada & Swanand Hardikar & Levon Halabeli, 2024. "Loss-of-function mutation in PRMT9 causes abnormal synapse development by dysregulation of RNA alternative splicing," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Casper J Breuker & James S Patterson & Christian Peter Klingenberg, 2006. "A Single Basis for Developmental Buffering of Drosophila Wing Shape," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-7, December.
    9. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    10. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    12. Thomas C. J. Tan & Van Kelly & Xiaoyan Zou & David Wright & Tony Ly & Rose Zamoyska, 2022. "Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Katharina Clemm von Hohenberg & Sandra Müller & Sibylle Schleich & Matthias Meister & Jonathan Bohlen & Thomas G. Hofmann & Aurelio A. Teleman, 2022. "Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Ryosuke Ishimura & Afnan H. El-Gowily & Daisuke Noshiro & Satoko Komatsu-Hirota & Yasuko Ono & Mayumi Shindo & Tomohisa Hatta & Manabu Abe & Takefumi Uemura & Hyeon-Cheol Lee-Okada & Tarek M. Mohamed , 2022. "The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. He Cao & Panpan Yang & Jia Liu & Yan Shao & Honghao Li & Pinglin Lai & Hong Wang & Anling Liu & Bin Guo & Yujin Tang & Xiaochun Bai & Kai Li, 2023. "MYL3 protects chondrocytes from senescence by inhibiting clathrin-mediated endocytosis and activating of Notch signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Moore, Patrick V. & Bennett, Kathleen & Normand, Charles, 2017. "Counting the time lived, the time left or illness? Age, proximity to death, morbidity and prescribing expenditures," Social Science & Medicine, Elsevier, vol. 184(C), pages 1-14.
    18. Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Yan-Ping Zhang & Wen-Hong Zhang & Pan Zhang & Qi Li & Yue Sun & Jia-Wen Wang & Shaobing O. Zhang & Tao Cai & Cheng Zhan & Meng-Qiu Dong, 2022. "Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33916-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.