IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35252-y.html
   My bibliography  Save this article

Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes

Author

Listed:
  • Thomas C. J. Tan

    (University of Edinburgh, Ashworth Laboratories)

  • Van Kelly

    (University of Edinburgh, Michael Swann Building)

  • Xiaoyan Zou

    (University of Edinburgh, Ashworth Laboratories)

  • David Wright

    (University of Edinburgh, Ashworth Laboratories)

  • Tony Ly

    (University of Edinburgh, Michael Swann Building
    University of Dundee)

  • Rose Zamoyska

    (University of Edinburgh, Ashworth Laboratories)

Abstract

Control of mRNA translation adjusts protein production rapidly and facilitates local cellular responses to environmental conditions. Traditionally initiation of translation is considered to be a major translational control point, however, control of peptide elongation is also important. Here we show that the function of the elongation factor, eIF5a, is regulated dynamically in naïve CD8+ T cells upon activation by post-translational modification, whereupon it facilitates translation of specific subsets of proteins. eIF5a is essential for long-term survival of effector CD8+ T cells and sequencing of nascent polypeptides indicates that the production of proteins which regulate proliferation and key effector functions, particularly the production of IFNγ and less acutely TNF production and cytotoxicity, is dependent on the presence of functional eIF5a. Control of translation in multiple immune cell lineages is required to co-ordinate immune responses and these data illustrate that translational elongation contributes to post-transcriptional regulons important for the control of inflammation.

Suggested Citation

  • Thomas C. J. Tan & Van Kelly & Xiaoyan Zou & David Wright & Tony Ly & Rose Zamoyska, 2022. "Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35252-y
    DOI: 10.1038/s41467-022-35252-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35252-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35252-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Björn Schwanhäusser & Dorothea Busse & Na Li & Gunnar Dittmar & Johannes Schuchhardt & Jana Wolf & Wei Chen & Matthias Selbach, 2011. "Global quantification of mammalian gene expression control," Nature, Nature, vol. 473(7347), pages 337-342, May.
    2. David Santamaría & Cédric Barrière & Antonio Cerqueira & Sarah Hunt & Claudine Tardy & Kathryn Newton & Javier F. Cáceres & Pierre Dubus & Marcos Malumbres & Mariano Barbacid, 2007. "Cdk1 is sufficient to drive the mammalian cell cycle," Nature, Nature, vol. 448(7155), pages 811-815, August.
    3. Marcello Ceci & Cristina Gaviraghi & Chiara Gorrini & Leonardo A. Sala & Nina Offenhäuser & Pier Carlo Marchisio & Stefano Biffo, 2003. "Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly," Nature, Nature, vol. 426(6966), pages 579-584, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    3. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Pekka Jaako & Alexandre Faille & Shengjiang Tan & Chi C. Wong & Norberto Escudero-Urquijo & Pablo Castro-Hartmann & Penny Wright & Christine Hilcenko & David J. Adams & Alan J. Warren, 2022. "eIF6 rebinding dynamically couples ribosome maturation and translation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Zaili Luo & Dazhuan Xin & Yunfei Liao & Kalen Berry & Sean Ogurek & Feng Zhang & Liguo Zhang & Chuntao Zhao & Rohit Rao & Xinran Dong & Hao Li & Jianzhong Yu & Yifeng Lin & Guoying Huang & Lingli Xu &, 2023. "Loss of phosphatase CTDNEP1 potentiates aggressive medulloblastoma by triggering MYC amplification and genomic instability," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Gábor Csárdi & Alexander Franks & David S Choi & Edoardo M Airoldi & D Allan Drummond, 2015. "Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast," PLOS Genetics, Public Library of Science, vol. 11(5), pages 1-32, May.
    8. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    9. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    10. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Jingbo Qie & Yang Liu & Yunzhi Wang & Fan Zhang & Zhaoyu Qin & Sha Tian & Mingwei Liu & Kai Li & Wenhao Shi & Lei Song & Mingjun Sun & Yexin Tong & Ping Hu & Tao Gong & Xiaqiong Wang & Yi Huang & Bolo, 2022. "Integrated proteomic and transcriptomic landscape of macrophages in mouse tissues," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    12. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    13. Katharina Clemm von Hohenberg & Sandra Müller & Sibylle Schleich & Matthias Meister & Jonathan Bohlen & Thomas G. Hofmann & Aurelio A. Teleman, 2022. "Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Ryosuke Ishimura & Afnan H. El-Gowily & Daisuke Noshiro & Satoko Komatsu-Hirota & Yasuko Ono & Mayumi Shindo & Tomohisa Hatta & Manabu Abe & Takefumi Uemura & Hyeon-Cheol Lee-Okada & Tarek M. Mohamed , 2022. "The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Sajib Chakraborty & Hossain Uddin Shekhar, 2017. "Applications of Mass-Spectrometry Based Quantitative Proteomics to Understand Complex Cellular Functions and Cell Fate Decisions," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(1), pages 169-171, June.
    17. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Johan Kerkhofs & Liesbet Geris, 2015. "A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    19. Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Rune B Jakobsen & Esben Østrup & Xiaolan Zhang & Tarjei S Mikkelsen & Jan E Brinchmann, 2014. "Analysis of the Effects of Five Factors Relevant to In Vitro Chondrogenesis of Human Mesenchymal Stem Cells Using Factorial Design and High Throughput mRNA-Profiling," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35252-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.