IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58894-0.html
   My bibliography  Save this article

Cryo-EM structure of the AAA+ SPATA5 complex and its role in human cytoplasmic pre-60S maturation

Author

Listed:
  • Yuhao Dai

    (Peking University
    Peking University)

  • Damu Wu

    (Peking University
    Peking University)

  • Ningning Li

    (Peking University)

  • Chengying Ma

    (Peking University)

  • Yunyang Zhang

    (Peking University)

  • Ning Gao

    (Peking University
    Peking University
    Peking University)

Abstract

Eukaryotic ribosome biogenesis is an energy-consuming process involving many ATPase-driven steps. In yeast, AAA+ protein Drg1 releases an assembly factor Rlp24, a placeholder for Rpl24, from pre-60S particles just exported to cytosol. The equivalent process in human cells involves SPATA5 (Drg1 homolog) and additional factors. However, the mechanistic details remain unclear. Here we reveal that SPATA5 forms a 4:2:2:2 complex with SPATA5L1, C1orf109, and CINP. This complex features an N-terminal ring made of C1orf109, CINP and NTDs of SPATA5/SPATA5L1, and two hexameric AAA+ ATPase rings. Intriguingly, a conserved cysteine C672 in the P-loop of SPATA5 is sulfinylated, generating an inactive conformation incompatible with ATP binding. We also obtained a cryo-EM structure of pre-60S-bound SPATA5 complex. Different from yeast, the recognition of the pre-60S particle is mediated by human-specific factor CINP, through two distinct sets of interactions: one with GTPBP4 and the other with ES27A. Taken together, these data provide structural basis for understanding the cytoplasmic maturation of the pre-60S, and reveal human-specific features that might be harnessed for therapeutic purposes.

Suggested Citation

  • Yuhao Dai & Damu Wu & Ningning Li & Chengying Ma & Yunyang Zhang & Ning Gao, 2025. "Cryo-EM structure of the AAA+ SPATA5 complex and its role in human cytoplasmic pre-60S maturation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58894-0
    DOI: 10.1038/s41467-025-58894-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58894-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58894-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chengying Ma & Damu Wu & Qian Chen & Ning Gao, 2022. "Structural dynamics of AAA + ATPase Drg1 and mechanism of benzo-diazaborine inhibition," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. Emilien Nicolas & Pascaline Parisot & Celina Pinto-Monteiro & Roxane de Walque & Christophe De Vleeschouwer & Denis L. J. Lafontaine, 2016. "Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    4. Michael Ameismeier & Jingdong Cheng & Otto Berninghausen & Roland Beckmann, 2018. "Visualizing late states of human 40S ribosomal subunit maturation," Nature, Nature, vol. 558(7709), pages 249-253, June.
    5. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    6. Benoît Biteau & Jean Labarre & Michel B. Toledano, 2003. "ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin," Nature, Nature, vol. 425(6961), pages 980-984, October.
    7. Klemens Wild & Milan Aleksić & Karine Lapouge & Keven D. Juaire & Dirk Flemming & Stefan Pfeffer & Irmgard Sinning, 2020. "MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Xiaomeng Liang & Mei-Qing Zuo & Yunyang Zhang & Ningning Li & Chengying Ma & Meng-Qiu Dong & Ning Gao, 2020. "Structural snapshots of human pre-60S ribosomal particles before and after nuclear export," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    9. Yu-Hua Lo & Mack Sobhany & Allen L. Hsu & Brittany L. Ford & Juno M. Krahn & Mario J. Borgnia & Robin E. Stanley, 2019. "Cryo-EM structure of the essential ribosome assembly AAA-ATPase Rix7," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakob M. Silberberg & Sophie Ketter & Paul J. N. Böhm & Kristin Jordan & Marcel Wittenberg & Julia Grass & Inga Hänelt, 2024. "KdpD is a tandem serine histidine kinase that controls K+ pump KdpFABC transcriptionally and post-translationally," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Marius A. Klein & Klemens Wild & Miglė Kišonaitė & Irmgard Sinning, 2024. "Methionine aminopeptidase 2 and its autoproteolysis product have different binding sites on the ribosome," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Maximilian Rüttermann & Michelle Koci & Pascal Lill & Ermis Dionysios Geladas & Farnusch Kaschani & Björn Udo Klink & Ralf Erdmann & Christos Gatsogiannis, 2023. "Structure of the peroxisomal Pex1/Pex6 ATPase complex bound to a substrate," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Kamil Sekulski & Victor Emmanuel Cruz & Christine S. Weirich & Jan P. Erzberger, 2023. "rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Surabhi Kokane & Ashutosh Gulati & Pascal F. Meier & Rei Matsuoka & Tanadet Pipatpolkai & Giuseppe Albano & Tin Manh Ho & Lucie Delemotte & Daniel Fuster & David Drew, 2025. "PIP2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    8. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    10. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    13. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Weizhu Huang & Nan Jin & Jia Guo & Cangsong Shen & Chanjuan Xu & Kun Xi & Léo Bonhomme & Robert B. Quast & Dan-Dan Shen & Jiao Qin & Yi-Ru Liu & Yuxuan Song & Yang Gao & Emmanuel Margeat & Philippe Ro, 2024. "Structural basis of orientated asymmetry in a mGlu heterodimer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Yue Pang & Yating Qin & Zeyu Du & Qun Liu & Jin Zhang & Kai Han & Jiali Lu & Zengbao Yuan & Jun Li & Shanshan Pan & Xinrui Dong & Mengyang Xu & Dantong Wang & Shuo Li & Zhen Li & Yadong Chen & Zhishen, 2025. "Single-cell transcriptome atlas of lamprey exploring Natterin- induced white adipose tissue browning," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58894-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.