IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45524-4.html
   My bibliography  Save this article

Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1

Author

Listed:
  • Kristy Rochon

    (Case Western Reserve University School of Medicine)

  • Brianna L. Bauer

    (Case Western Reserve University School of Medicine)

  • Nathaniel A. Roethler

    (Case Western Reserve University School of Medicine)

  • Yuli Buckley

    (Case Western Reserve University School of Medicine)

  • Chih-Chia Su

    (Case Western Reserve University School of Medicine)

  • Wei Huang

    (Case Western Reserve University School of Medicine)

  • Rajesh Ramachandran

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Maria S. K. Stoll

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Edward W. Yu

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Derek J. Taylor

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Jason A. Mears

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

Abstract

Mitochondrial fission is a critical cellular event to maintain organelle function. This multistep process is initiated by the enhanced recruitment and oligomerization of dynamin-related protein 1 (Drp1) at the surface of mitochondria. As such, Drp1 is essential for inducing mitochondrial division in mammalian cells, and homologous proteins are found in all eukaryotes. As a member of the dynamin superfamily of proteins (DSPs), controlled Drp1 self-assembly into large helical polymers stimulates its GTPase activity to promote membrane constriction. Still, little is known about the mechanisms that regulate correct spatial and temporal assembly of the fission machinery. Here we present a cryo-EM structure of a full-length Drp1 dimer in an auto-inhibited state. This dimer reveals two key conformational rearrangements that must be unlocked through intramolecular rearrangements to achieve the assembly-competent state observed in previous structures. This structural insight provides understanding into the mechanism for regulated self-assembly of the mitochondrial fission machinery.

Suggested Citation

  • Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45524-4
    DOI: 10.1038/s41467-024-45524-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45524-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45524-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Marijn G. J. Ford & Simon Jenni & Jodi Nunnari, 2011. "The crystal structure of dynamin," Nature, Nature, vol. 477(7366), pages 561-566, September.
    3. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    4. Katja Faelber & York Posor & Song Gao & Martin Held & Yvette Roske & Dennis Schulze & Volker Haucke & Frank Noé & Oliver Daumke, 2011. "Crystal structure of nucleotide-free dynamin," Nature, Nature, vol. 477(7366), pages 556-560, September.
    5. Raghav Kalia & Ray Yu-Ruei Wang & Ali Yusuf & Paul V. Thomas & David A. Agard & Janet M. Shaw & Adam Frost, 2018. "Structural basis of mitochondrial receptor binding and constriction by DRP1," Nature, Nature, vol. 558(7710), pages 401-405, June.
    6. Song Gao & Alexander von der Malsburg & Susann Paeschke & Joachim Behlke & Otto Haller & Georg Kochs & Oliver Daumke, 2010. "Structural basis of oligomerization in the stalk region of dynamin-like MxA," Nature, Nature, vol. 465(7297), pages 502-506, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabel Pérez-Jover & Kristy Rochon & Di Hu & Mukesh Mahajan & Pooja Madan Mohan & Isaac Santos-Pérez & Julene Ormaetxea Gisasola & Juan Manuel Martinez Galvez & Jon Agirre & Xin Qi & Jason A. Mears & , 2024. "Allosteric control of dynamin-related protein 1 through a disordered C-terminal Short Linear Motif," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Lucas Gewehr & Benedikt Junglas & Ruven Jilly & Johannes Franz & Wenyu Eva Zhu & Tobias Weidner & Mischa Bonn & Carsten Sachse & Dirk Schneider, 2023. "SynDLP is a dynamin-like protein of Synechocystis sp. PCC 6803 with eukaryotic features," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Olga V. Kochenova & Sirisha Mukkavalli & Malavika Raman & Johannes C. Walter, 2022. "Cooperative assembly of p97 complexes involved in replication termination," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Andy M. Lau & Shaun M. Kandathil & David T. Jones, 2023. "Merizo: a rapid and accurate protein domain segmentation method using invariant point attention," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Xiuqing Lv & Kaixuan Gao & Jia Nie & Xin Zhang & Shuhao Zhang & Yinhang Ren & Xiaoou Sun & Qi Li & Jingrui Huang & Lijuan Liu & Xiaowen Zhang & Weishe Zhang & Xiangyu Liu, 2023. "Structures of human prostaglandin F2α receptor reveal the mechanism of ligand and G protein selectivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Guizhen Fan & Mariah R. Baker & Lara E. Terry & Vikas Arige & Muyuan Chen & Alexander B. Seryshev & Matthew L. Baker & Steven J. Ludtke & David I. Yule & Irina I. Serysheva, 2022. "Conformational motions and ligand-binding underlying gating and regulation in IP3R channel," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Daniel Flam-Shepherd & Kevin Zhu & Alán Aspuru-Guzik, 2022. "Language models can learn complex molecular distributions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Jianfeng Sun & Xue Li & Xuben Hou & Sujian Cao & Wenjin Cao & Ye Zhang & Jinyang Song & Manfu Wang & Hao Wang & Xiaodong Yan & Zengpeng Li & Robert G. Roeder & Wei Wang, 2022. "Structural basis of human SNAPc recognizing proximal sequence element of snRNA promoter," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45524-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.