IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58815-1.html
   My bibliography  Save this article

The global determinants of climate niche breadth in birds

Author

Listed:
  • João Fabrício Mota Rodrigues

    (University of Texas at Austin)

  • Carlos A. Botero

    (University of Texas at Austin)

Abstract

Understanding why certain species occupy wider climate niches than others is a fundamental pursuit in ecology with important implications for conservation and management. However, existing synthesis on this topic has focused on the consequences rather than the causes of climate niche expansion, leading to significant gaps in our understanding of the possible evolutionary drivers of this important ecological property. Here we leverage species distribution models powered by millions of citizen science sightings of birds to determine how a comprehensive suite of parameters influences the breadth of climate niches. Our analyses show that migration and more central locations in climate space are directly associated with wider climate niches. Additionally, they indicate that larger brains, smaller bodies, and broader dietary requirements are indirectly associated with narrower niches, presumably because they enable the occupancy of geographically widespread habitats that occupy narrow areas in climate niche space. Through follow-up analyses we further clarify how the different factors considered in this study help shape niche breadth by affecting the colonization of more versus less frequently used habitats. Overall, our findings shed light on critical, yet highly underappreciated properties of climate niches, underscoring the complexity and interconnectivity of the factors that shaped their evolution among birds.

Suggested Citation

  • João Fabrício Mota Rodrigues & Carlos A. Botero, 2025. "The global determinants of climate niche breadth in birds," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58815-1
    DOI: 10.1038/s41467-025-58815-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58815-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58815-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Sol & Núria Garcia & Andrew Iwaniuk & Katie Davis & Andrew Meade & W Alice Boyle & Tamás Székely, 2010. "Evolutionary Divergence in Brain Size between Migratory and Resident Birds," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    2. Sarah E. Overington & Andrea S. Griffin & Daniel Sol & Louis Lefebvre, 2011. "Are innovative species ecological generalists? A test in North American birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 22(6), pages 1286-1293.
    3. Ferran Sayol & Joan Maspons & Oriol Lapiedra & Andrew N. Iwaniuk & Tamás Székely & Daniel Sol, 2016. "Environmental variation and the evolution of large brains in birds," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    4. Catherine Sheard & Montague H. C. Neate-Clegg & Nico Alioravainen & Samuel E. I. Jones & Claire Vincent & Hannah E. A. MacGregor & Tom P. Bregman & Santiago Claramunt & Joseph A. Tobias, 2020. "Ecological drivers of global gradients in avian dispersal inferred from wing morphology," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. W. Jetz & G. H. Thomas & J. B. Joy & K. Hartmann & A. O. Mooers, 2012. "The global diversity of birds in space and time," Nature, Nature, vol. 491(7424), pages 444-448, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joan Garcia-Porta & Daniel Sol & Matt Pennell & Ferran Sayol & Antigoni Kaliontzopoulou & Carlos A. Botero, 2022. "Niche expansion and adaptive divergence in the global radiation of crows and ravens," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Peter Mikula & Oldřich Tomášek & Dušan Romportl & Timothy K. Aikins & Jorge E. Avendaño & Bukola D. A. Braimoh-Azaki & Adams Chaskda & Will Cresswell & Susan J. Cunningham & Svein Dale & Gabriela R. F, 2023. "Bird tolerance to humans in open tropical ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jonathan A. Rader & Tyson L. Hedrick, 2023. "Morphological evolution of bird wings follows a mechanical sensitivity gradient determined by the aerodynamics of flapping flight," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yichen He & Zoë K. Varley & Lara O. Nouri & Christopher J. A. Moody & Michael D. Jardine & Steve Maddock & Gavin H. Thomas & Christopher R. Cooney, 2022. "Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. repec:plo:pone00:0236417 is not listed on IDEAS
    6. Andrew Brinkworth & Emily Green & Yimeng Li & Jack Oyston & Marcello Ruta & Matthew A. Wills, 2023. "Bird clades with less complex appendicular skeletons tend to have higher species richness," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Guido Montúfar & Keyan Ghazi-Zahedi & Nihat Ay, 2015. "A Theory of Cheap Control in Embodied Systems," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-22, September.
    8. Stephen A. Schlebusch & Jakub Rídl & Manon Poignet & Francisco J. Ruiz-Ruano & Jiří Reif & Petr Pajer & Jan Pačes & Tomáš Albrecht & Alexander Suh & Radka Reifová, 2023. "Rapid gene content turnover on the germline-restricted chromosome in songbirds," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Eli M Swanson & Kay E Holekamp & Barbara L Lundrigan & Bradley M Arsznov & Sharleen T Sakai, 2012. "Multiple Determinants of Whole and Regional Brain Volume among Terrestrial Carnivorans," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-11, June.
    10. Thomas W. Bodey & Ross N. Cuthbert & Christophe Diagne & Clara Marino & Anna Turbelin & Elena Angulo & Jean Fantle-Lepczyk & Daniel Pincheira-Donoso & Franck Courchamp & Emma J. Hudgins, 2025. "Predicting the global economic costs of biological invasions by tetrapods," Post-Print hal-04963316, HAL.
    11. Justin W. Baldwin & Joan Garcia-Porta & Carlos A. Botero, 2023. "Complementarity in Allen’s and Bergmann’s rules among birds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Alexandra McQueen & Marcel Klaassen & Glenn J. Tattersall & Robyn Atkinson & Roz Jessop & Chris J. Hassell & Maureen Christie & Matthew R. E. Symonds, 2022. "Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Xiaodan Wang & Marius Somveille & Adriaan M. Dokter & Wenhua Cao & Chuyu Cheng & Jiajia Liu & Zhijun Ma, 2024. "Macro-scale relationship between body mass and timing of bird migration," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    15. Montague H C Neate-Clegg & Simon N Stuart & Devolent Mtui & Çağan H Şekercioğlu & William D Newmark, 2021. "Afrotropical montane birds experience upslope shifts and range contractions along a fragmented elevational gradient in response to global warming," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-17, March.
    16. Júnior, Emerson Campos Barbosa & Rios, Vitor Passos & Dodonov, Pavel & Vilela, Bruno & Japyassú, Hilton F, 2022. "Effect of behavioural plasticity and environmental properties on the resilience of communities under habitat loss and fragmentation," Ecological Modelling, Elsevier, vol. 472(C).
    17. Shan Su & Phillip Cassey & Miquel Vall-llosera & Tim M Blackburn, 2015. "Going Cheap: Determinants of Bird Price in the Taiwanese Pet Market," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    18. John M. Humphreys, 2022. "Amplification in Time and Dilution in Space: Partitioning Spatiotemporal Processes to Assess the Role of Avian-Host Phylodiversity in Shaping Eastern Equine Encephalitis Virus Distribution," Geographies, MDPI, vol. 2(3), pages 1-16, July.
    19. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    20. Leanna N. DeJong & Samuel D. Cowell & Thuy Nhi N. Nguyen & Darren S. Proppe, 2015. "Attracting songbirds with conspecific playback: a community approach," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(5), pages 1379-1388.
    21. Andrea Santangeli & Benjamin Weigel & Laura H. Antão & Elina Kaarlejärvi & Maria Hällfors & Aleksi Lehikoinen & Andreas Lindén & Maija Salemaa & Tiina Tonteri & Päivi Merilä & Kristiina Vuorio & Otso , 2023. "Mixed effects of a national protected area network on terrestrial and freshwater biodiversity," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58815-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.