IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58735-0.html
   My bibliography  Save this article

Oxygen spillover on supported Pt-cluster for anti-CO-poisoning hydrogen oxidation

Author

Listed:
  • Di Shen

    (Heilongjiang University
    Chinese Academy of Sciences)

  • Fanfei Sun

    (Chinese Academy of Sciences)

  • Zhijian Liang

    (Heilongjiang University)

  • Bingbao Mei

    (Chinese Academy of Sciences)

  • Ying Xie

    (Heilongjiang University)

  • Yucheng Wang

    (Xiamen University)

  • Lei Wang

    (Heilongjiang University)

  • Honggang Fu

    (Heilongjiang University)

Abstract

Reducing Pt loading in the anodic hydrogen oxidation reaction (HOR) and concurrently increasing mass activity and CO tolerance are essential for advancing proton exchange membrane fuel cells (PEMFCs). Here, an electrocatalyst of 1.7 wt% Pt clusters loaded on a hollow bowl-like W3O/WC heterostructure is designed to increase the anti-CO-poisoning HOR. Due to its unique electron delocalization effect, the W3O/WC heterostructure serves as a warehouse to share electrons with Pt; this simultaneously lowers the HOR barrier and accumulates the hydroxyl radicals (•OH) to accelerate CO oxidation. The Pt‒O bond originating from the oxygen spillover effect of W3O promotes hydrogen and CO oxidation, whereas the lattice‒O consumed in W3O replenished through water dissociation. The resultant electrocatalyst exhibits mass activity of 469 A g‒1 at 50 mV and anti-toxicity even at 2000 ppm CO. The PEMEC delivers a peak power density of 1.63 W cm‒2 and maintains considerable anti-CO poisoning performance.

Suggested Citation

  • Di Shen & Fanfei Sun & Zhijian Liang & Bingbao Mei & Ying Xie & Yucheng Wang & Lei Wang & Honggang Fu, 2025. "Oxygen spillover on supported Pt-cluster for anti-CO-poisoning hydrogen oxidation," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58735-0
    DOI: 10.1038/s41467-025-58735-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58735-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58735-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianjun Chen & Shangchao Xiong & Haiyan Liu & Jianqiang Shi & Jinxing Mi & Hao Liu & Zhengjun Gong & Laetitia Oliviero & Françoise Maugé & Junhua Li, 2023. "Reverse oxygen spillover triggered by CO adsorption on Sn-doped Pt/TiO2 for low-temperature CO oxidation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Hui Jin & Zhewei Xu & Zhi-Yi Hu & Zhiwen Yin & Zhao Wang & Zhao Deng & Ping Wei & Shihao Feng & Shunhong Dong & Jinfeng Liu & Sicheng Luo & Zhaodong Qiu & Liang Zhou & Liqiang Mai & Bao-Lian Su & Dong, 2023. "Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Shuai Qin & Yu Duan & Xiao-Long Zhang & Li-Rong Zheng & Fei-Yue Gao & Peng-Peng Yang & Zhuang-Zhuang Niu & Ren Liu & Yu Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Min-Rui Gao, 2021. "Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Zhigang Chen & Wenbin Gong & Juan Wang & Shuang Hou & Guang Yang & Chengfeng Zhu & Xiyue Fan & Yifan Li & Rui Gao & Yi Cui, 2023. "Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wensheng Jiao & Zhanghao Ren & Zhibo Cui & Chao Ma & Ziang Shang & Guanzhen Chen & Ruihu Lu & Tao Gan & Ziyun Wang & Yu Xiong & Yunhu Han, 2025. "All-round enhancement induced by oxophilic single Ru and W atoms for alkaline hydrogen oxidation of tiny Pt nanoparticles," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Daying Zheng & Kaijie Liu & Zeshu Zhang & Qi Fu & Mengyao Bian & Xinyu Han & Xin Shen & Xiaohui Chen & Haijiao Xie & Xiao Wang & Xiangguang Yang & Yibo Zhang & Shuyan Song, 2024. "Essential features of weak current for excellent enhancement of NOx reduction over monoatomic V-based catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Jiadong Chen & Chunhong Chen & Minkai Qin & Ben Li & Binbin Lin & Qing Mao & Hongbin Yang & Bin Liu & Yong Wang, 2022. "Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Xin Lin & Shize Geng & Xianglong Du & Feiteng Wang & Xu Zhang & Fang Xiao & Zhengyi Xiao & Yucheng Wang & Jun Cheng & Zhifeng Zheng & Xiaoqing Huang & Lingzheng Bu, 2025. "Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yunan Li & Lingling Guo & Meng Du & Chen Tian & Gui Zhao & Zhengwu Liu & Zhenye Liang & Kunming Hou & Junxiang Chen & Xi Liu & Luozhen Jiang & Bing Nan & Lina Li, 2024. "Unraveling distinct effects between CuOx and PtCu alloy sites in Pt−Cu bimetallic catalysts for CO oxidation at different temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Jiaqi Feng & Limin Wu & Xinning Song & Libing Zhang & Shunhan Jia & Xiaodong Ma & Xingxing Tan & Xinchen Kang & Qinggong Zhu & Xiaofu Sun & Buxing Han, 2024. "CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Tengfei Zhang & Peng Zheng & Jiajian Gao & Xiaolong Liu & Yongjun Ji & Junbo Tian & Yang Zou & Zhiyi Sun & Qiao Hu & Guokang Chen & Wenxing Chen & Xi Liu & Ziyi Zhong & Guangwen Xu & Tingyu Zhu & Fabi, 2024. "Simultaneously activating molecular oxygen and surface lattice oxygen on Pt/TiO2 for low-temperature CO oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Lingbin Xie & Longlu Wang & Xia Liu & Jianmei Chen & Xixing Wen & Weiwei Zhao & Shujuan Liu & Qiang Zhao, 2024. "Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Zhigang Chen & Minghao Yang & Yifan Li & Wenbin Gong & Juan Wang & Tong Liu & Chunyu Zhang & Shuang Hou & Guang Yang & Hao Li & Ye Jin & Chunyan Zhang & Zhongqing Tian & Fancheng Meng & Yi Cui, 2025. "Termination-acidity tailoring of molybdenum carbides for alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    16. Xing-Chi Li & Jun-Hao Wang & Tao-Tao Huang & Yang Hu & Xin Li & De-Jiu Wang & Wei-Wei Wang & Kai Xu & Chun-Jiang Jia & Hao Dong & Guangshe Li & Chen Li & Ya-Wen Zhang, 2025. "Tunning valence state of cobalt centers in Cu/Co-CoO1-x for significantly boosting water-gas shift reaction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Shunhan Jia & Libing Zhang & Hanle Liu & Ruhan Wang & Xiangyuan Jin & Limin Wu & Xinning Song & Xingxing Tan & Xiaodong Ma & Jiaqi Feng & Qinggong Zhu & Xinchen Kang & Qingli Qian & Xiaofu Sun & Buxin, 2024. "Upgrading of nitrate to hydrazine through cascading electrocatalytic ammonia production with controllable N-N coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Gina Bang & Seongmin Jin & Hyokyung Kim & Kyung-Min Kim & Chang-Ha Lee, 2023. "Mg-incorporated sorbent for efficient removal of trace CO from H2 gas," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58735-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.