IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58731-4.html
   My bibliography  Save this article

Temperature-triggered inflatable hydrogel muscles with snap-through instability for untethered robots

Author

Listed:
  • Yande Cui

    (Zhongnan Hospital of Wuhan University
    Wuhan University)

  • Jianhua Hu

    (Wuhan University)

  • Ziyang Dong

    (Wuhan University)

  • Bing Li

    (Zhongnan Hospital of Wuhan University)

  • Chunyu Chang

    (Zhongnan Hospital of Wuhan University
    Wuhan University)

Abstract

Pneumatic artificial muscles have been widely used in the field of robotics because of their large output force and fast actuation, however, the accompanying bulky compressors and pumps limit their miniaturized applications. Despite current untethered pneumatic artificial muscles can be driven by adjusting the internal pressure, it is challenging to structurally mimic natural muscles with high water content. Here, we propose untethered pneumatic artificial muscles comprising a hydrogel actuator with snap-through instability and an air storage chamber. These hydrogel actuators can realize the conversion from hydrophobic association of octyl acrylate moieties to host-guest interaction between β-cyclodextrin and octyl acrylate under thermal stimuli, leading to the decrease of their moduli. The inflated hydrogel actuators exhibit rapid actuation with a radial expansion speed of 200% s−1, which are powered by snap-through instability, thermal expansion of the gas inside the hydrogel actuator, and evaporation of water on its internal surface. With the pneumatic artificial muscles miniaturized, we demonstrate diving and rolling robots, exemplifying bionic robots able to adapt to and modify the environment. We expect that the design of hydrogel actuator in miniaturized pneumatic artificial muscles will facilitate rapid locomotion for future bionic robotic platforms.

Suggested Citation

  • Yande Cui & Jianhua Hu & Ziyang Dong & Bing Li & Chunyu Chang, 2025. "Temperature-triggered inflatable hydrogel muscles with snap-through instability for untethered robots," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58731-4
    DOI: 10.1038/s41467-025-58731-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58731-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58731-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenfei Ai & Kai Hou & Jiaxin Wu & Yue Long & Kai Song, 2024. "Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Trevor J. Jones & Etienne Jambon-Puillet & Joel Marthelot & P.-T. Brun, 2021. "Bubble casting soft robotics," Nature, Nature, vol. 599(7884), pages 229-233, November.
    3. Huating Ye & Baohu Wu & Shengtong Sun & Peiyi Wu, 2024. "Self-compliant ionic skin by leveraging hierarchical hydrogen bond association," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Hyunwoo Yuk & Shaoting Lin & Chu Ma & Mahdi Takaffoli & Nicolas X. Fang & Xuanhe Zhao, 2017. "Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    5. Michael Wehner & Ryan L. Truby & Daniel J. Fitzgerald & Bobak Mosadegh & George M. Whitesides & Jennifer A. Lewis & Robert J. Wood, 2016. "An integrated design and fabrication strategy for entirely soft, autonomous robots," Nature, Nature, vol. 536(7617), pages 451-455, August.
    6. Anthony C. Yu & Huada Lian & Xian Kong & Hector Lopez Hernandez & Jian Qin & Eric A. Appel, 2021. "Physical networks from entropy-driven non-covalent interactions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Wenfei Ai & Kai Hou & Jiaxin Wu & Yue Long & Kai Song, 2024. "Author Correction: Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation," Nature Communications, Nature, vol. 15(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shibo Zou & Sergio Picella & Jelle Vries & Vera G. Kortman & Aimée Sakes & Johannes T. B. Overvelde, 2024. "A retrofit sensing strategy for soft fluidic robots," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. D. Fonseca & P. Neto, 2025. "Electrically-driven phase transition actuators to power soft robot designs," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Jiefeng Sun & Elisha Lerner & Brandon Tighe & Clint Middlemist & Jianguo Zhao, 2023. "Embedded shape morphing for morphologically adaptive robots," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Dongliang Fan & Xi Yuan & Wenyu Wu & Renjie Zhu & Xin Yang & Yuxuan Liao & Yunteng Ma & Chufan Xiao & Cheng Chen & Changyue Liu & Hongqiang Wang & Peiwu Qin, 2022. "Self-shrinking soft demoulding for complex high-aspect-ratio microchannels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Xianghe Meng & Shishi Li & Xingjian Shen & Chenyao Tian & Liyang Mao & Hui Xie, 2024. "Programmable spatial magnetization stereolithographic printing of biomimetic soft machines with thin-walled structures," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Yin Zhang & Wang Zhang & Pan Gao & Xiaoqing Zhong & Wei Pu, 2022. "Finger-palm synergistic soft gripper for dynamic capture via energy harvesting and dissipation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Aruã Clayton Da Silva & Junzhi Wang & Ivan Rusev Minev, 2022. "Electro-assisted printing of soft hydrogels via controlled electrochemical reactions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Yunjiang Wang & Xinben Hu & Luhang Cui & Xuan Xiao & Keji Yang & Yongjian Zhu & Haoran Jin, 2024. "Bioinspired handheld time-share driven robot with expandable DoFs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Hayato Saigo & Makoto Naruse & Kazuya Okamura & Hirokazu Hori & Izumi Ojima, 2019. "Analysis of Soft Robotics Based on the Concept of Category of Mobility," Complexity, Hindawi, vol. 2019, pages 1-12, March.
    15. Van Hiep Nguyen & Saewoong Oh & Manmatha Mahato & Rassoul Tabassian & Hyunjoon Yoo & Seong-Gyu Lee & Mousumi Garai & Kwang Jin Kim & Il-Kwon Oh, 2024. "Functionally antagonistic polyelectrolyte for electro-ionic soft actuator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Wenfei Ai & Kai Hou & Jiaxin Wu & Yue Long & Kai Song, 2024. "Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Minho Seong & Kahyun Sun & Somi Kim & Hyukjoo Kwon & Sang-Woo Lee & Sarath Chandra Veerla & Dong Kwan Kang & Jaeil Kim & Stalin Kondaveeti & Salah M. Tawfik & Hyung Wook Park & Hoon Eui Jeong, 2024. "Multifunctional Magnetic Muscles for Soft Robotics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58731-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.