IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58584-x.html
   My bibliography  Save this article

Epidermal electronic-tattoo for plant immune response monitoring

Author

Listed:
  • Tianyiyi He

    (National University of Singapore
    National University of Singapore
    National University of Singapore
    Shenzhen MSU-BIT University)

  • Jinge Wang

    (National University of Singapore
    National University of Singapore)

  • Donghui Hu

    (National University of Singapore
    National University of Singapore)

  • Yanqin Yang

    (National University of Singapore)

  • Eunyoung Chae

    (National University of Singapore
    National University of Singapore
    South Parks Road)

  • Chengkuo Lee

    (National University of Singapore
    National University of Singapore
    National University of Singapore
    National University of Singapore)

Abstract

Real-time monitoring of plant immune responses is crucial for understanding plant immunity and mitigating economic losses from pathogen and pest attacks. However, current methods relying on molecular-level assessment are destructive and time-consuming. Here, we report an ultrathin, substrate-free, and highly conductive electronic tattoo (e-tattoo) designed for plants, enabling immune response monitoring through non-invasive electrical impedance spectroscopy (EIS). The e-tattoo’s biocompatibility, high conductivity, and sub-100 nm thickness allow it to conform to leaf tissue morphology and provide robust impedance data. We demonstrate continuous EIS analysis of live transgenic Arabidopsis thaliana plants for over 24 h, capturing the onset of NLR-mediated acute immune responses within three hours post-induction, prior to visible symptoms. RNA-seq and tissue ion leakage tests validate that EIS data accurately represent the physiological and molecular changes associated with immune activation. This non-invasive tissue-assessment technology has the potential to enhance our comprehension of immune activation mechanisms in plants and paves the way for real-time monitoring for plant health management.

Suggested Citation

  • Tianyiyi He & Jinge Wang & Donghui Hu & Yanqin Yang & Eunyoung Chae & Chengkuo Lee, 2025. "Epidermal electronic-tattoo for plant immune response monitoring," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58584-x
    DOI: 10.1038/s41467-025-58584-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58584-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58584-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongcheng Xu & Weihao Zheng & Yang Zhang & Daqing Zhao & Lu Wang & Yunlong Zhao & Weidong Wang & Yangbo Yuan & Ji Zhang & Zimin Huo & Yuejiao Wang & Ningjuan Zhao & Yuxin Qin & Ke Liu & Ruida Xi & Gan, 2023. "A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Qiongfeng Shi & Zixuan Zhang & Tianyiyi He & Zhongda Sun & Bingjie Wang & Yuqin Feng & Xuechuan Shan & Budiman Salam & Chengkuo Lee, 2020. "Deep learning enabled smart mats as a scalable floor monitoring system," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Bruno Pok Man Ngou & Hee-Kyung Ahn & Pingtao Ding & Jonathan D. G. Jones, 2021. "Mutual potentiation of plant immunity by cell-surface and intracellular receptors," Nature, Nature, vol. 592(7852), pages 110-115, April.
    4. Tao Jin & Zhongda Sun & Long Li & Quan Zhang & Minglu Zhu & Zixuan Zhang & Guangjie Yuan & Tao Chen & Yingzhong Tian & Xuyan Hou & Chengkuo Lee, 2020. "Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Ding Li & Tian-Rui Cui & Jia-Hao Liu & Wan-Cheng Shao & Xiao Liu & Zhi-Kang Chen & Zi-Gan Xu & Xin Li & Shuo-Yan Xu & Zi-Yi Xie & Jin-Ming Jian & Xu Wang & Lu-Qi Tao & Xiao-Ming Wu & Zhong-Wei Cheng &, 2025. "Motion-unrestricted dynamic electrocardiogram system utilizing imperceptible electronics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Zhao, Kun & Song, Zhenhua & Sun, Wanru & Gao, Wei & Guo, Junhong & Zhang, Kewei, 2024. "Flexible neodymium iron boron/polyvinyl chloride (Nd2Fe14B/PVC) composite film based hybrid nanogenerator for efficient mechanical energy harvesting," Energy, Elsevier, vol. 300(C).
    4. Qiuhua Yang & Zhuowen Li & Kaixiang Guan & Zhenghong Wang & Xianli Tang & Yechun Hong & Zhijian Liu & Jixian Zhai & Ancheng Huang & Yanping Long & Yi Song, 2025. "Comparative single-nucleus RNA-seq analysis revealed localized and cell type-specific pathways governing root-microbiome interactions," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Sayaka Matsui & Saki Noda & Keiko Kuwata & Mika Nomoto & Yasuomi Tada & Hidefumi Shinohara & Yoshikatsu Matsubayashi, 2024. "Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Ci Kong & Yin Yang & Tiancong Qi & Shuyi Zhang, 2025. "Predictive genetic circuit design for phenotype reprogramming in plants," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Peiyi Wang & Zhexin Xie & Wenci Xin & Zhiqiang Tang & Xinhua Yang & Muralidharan Mohanakrishnan & Sheng Guo & Cecilia Laschi, 2024. "Sensing expectation enables simultaneous proprioception and contact detection in an intelligent soft continuum robot," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Li Yang & Xue Chen & Ankan Dutta & Hui Zhang & Zihan Wang & Mingyang Xin & Shuaijie Du & Guizhi Xu & Huanyu Cheng, 2025. "Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Wenhao Li & Hongwei Zhu & Jinzhu Chen & Binglu Ru & Qin Peng & Jianqiang Miao & Xili Liu, 2024. "PsAF5 functions as an essential adapter for PsPHB2-mediated mitophagy under ROS stress in Phytophthora sojae," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Li Fan & Katja Fröhlich & Eric Melzer & Rory N. Pruitt & Isabell Albert & Lisha Zhang & Anna Joe & Chenlei Hua & Yanyue Song & Markus Albert & Sang-Tae Kim & Detlef Weigel & Cyril Zipfel & Eunyoung Ch, 2022. "Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Fabien Lonjon & Yan Lai & Nasrin Askari & Niharikaa Aiyar & Cedoljub Bundalovic-Torma & Bradley Laflamme & Pauline W. Wang & Darrell Desveaux & David S. Guttman, 2024. "The effector-triggered immunity landscape of tomato against Pseudomonas syringae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Mengjiao Li & Hong-Wei Lu & Shu-Wei Wang & Rei-Ping Li & Jiann-Yeu Chen & Wen-Shuo Chuang & Feng-Shou Yang & Yen-Fu Lin & Chih-Yen Chen & Ying-Chih Lai, 2022. "Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Ningning Bai & Yiheng Xue & Shuiqing Chen & Lin Shi & Junli Shi & Yuan Zhang & Xingyu Hou & Yu Cheng & Kaixi Huang & Weidong Wang & Jin Zhang & Yuan Liu & Chuan Fei Guo, 2023. "A robotic sensory system with high spatiotemporal resolution for texture recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Rui Chen & Tao Luo & Jincheng Wang & Renpeng Wang & Chen Zhang & Yu Xie & Lifeng Qin & Haimin Yao & Wei Zhou, 2023. "Nonlinearity synergy: An elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Yuanxi Zhang & Chengfeng Pan & Pengfei Liu & Lelun Peng & Zhouming Liu & Yuanyuan Li & Qingyuan Wang & Tong Wu & Zhe Li & Carmel Majidi & Lelun Jiang, 2023. "Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Haitao Yang & Shuo Ding & Jiahao Wang & Shuo Sun & Ruphan Swaminathan & Serene Wen Ling Ng & Xinglong Pan & Ghim Wei Ho, 2024. "Computational design of ultra-robust strain sensors for soft robot perception and autonomy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Wenbo Liu & Youning Duo & Jiaqi Liu & Feiyang Yuan & Lei Li & Luchen Li & Gang Wang & Bohan Chen & Siqi Wang & Hui Yang & Yuchen Liu & Yanru Mo & Yun Wang & Bin Fang & Fuchun Sun & Xilun Ding & Chi Zh, 2022. "Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Zhiyi Chen & Jianhua Huang & Jianyu Li & Frank L. H. Menke & Jonathan D. G. Jones & Hailong Guo, 2025. "Reversible ubiquitination conferred by domain shuffling controls paired NLR immune receptor complex homeostasis in plant immunity," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58584-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.