IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58390-5.html
   My bibliography  Save this article

Motion-unrestricted dynamic electrocardiogram system utilizing imperceptible electronics

Author

Listed:
  • Ding Li

    (Tsinghua University)

  • Tian-Rui Cui

    (Tsinghua University)

  • Jia-Hao Liu

    (University of Electronic Science and Technology of China)

  • Wan-Cheng Shao

    (Tsinghua University)

  • Xiao Liu

    (University of Electronic Science and Technology of China)

  • Zhi-Kang Chen

    (Tsinghua University)

  • Zi-Gan Xu

    (Tsinghua University)

  • Xin Li

    (Tsinghua University)

  • Shuo-Yan Xu

    (Tsinghua University)

  • Zi-Yi Xie

    (University of Electronic Science and Technology of China)

  • Jin-Ming Jian

    (Tsinghua University)

  • Xu Wang

    (University of Electronic Science and Technology of China)

  • Lu-Qi Tao

    (Tsinghua University)

  • Xiao-Ming Wu

    (Tsinghua University
    Tsinghua University)

  • Zhong-Wei Cheng

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Zi-Rui Dong

    (Tsinghua University)

  • Hou-Fang Liu

    (Tsinghua University)

  • Yi Yang

    (Tsinghua University
    Tsinghua University)

  • Jun Zhou

    (University of Electronic Science and Technology of China)

  • Tian-Ling Ren

    (Tsinghua University
    Tsinghua University)

Abstract

Electrocardiogram (ECG) plays a vital role in the prevention, diagnosis, and prognosis of cardiovascular diseases (CVDs). However, the lack of a user-friendly and accurate long-term dynamic electrocardiogram (DCG) device in motion has made it challenging to perform many daily cardiovascular risk screenings and assessments, such as sudden cardiac arrest, resulting in additional economic burdens on society. Here, we present a motion-unrestricted dynamic electrocardiogram (MU-DCG) system, which employs skin-conformal, imperceptible electronics for long-term, comfortable, and accurate 12-lead DCG monitoring. To facilitate assembly for use on the skin, the MU-DCG system features a pressure-activated flexible skin socket for stably soft-connecting the on-skin soft module and the off-skin stiff module during dynamic movements. Crucially, blinded cardiologist evaluations confirm minimal motion artifacts in MU-DCG-acquired ECG signals. Our results demonstrate that the MU-DCG system, with large-area, ultra-thin on-skin electrodes/leads, and an off-skin module, accomplishes anti-motion interference acquisition and in-situ analysis while retaining wearing imperceptibility.

Suggested Citation

  • Ding Li & Tian-Rui Cui & Jia-Hao Liu & Wan-Cheng Shao & Xiao Liu & Zhi-Kang Chen & Zi-Gan Xu & Xin Li & Shuo-Yan Xu & Zi-Yi Xie & Jin-Ming Jian & Xu Wang & Lu-Qi Tao & Xiao-Ming Wu & Zhong-Wei Cheng &, 2025. "Motion-unrestricted dynamic electrocardiogram system utilizing imperceptible electronics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58390-5
    DOI: 10.1038/s41467-025-58390-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58390-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58390-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongcheng Xu & Weihao Zheng & Yang Zhang & Daqing Zhao & Lu Wang & Yunlong Zhao & Weidong Wang & Yangbo Yuan & Ji Zhang & Zimin Huo & Yuejiao Wang & Ningjuan Zhao & Yuxin Qin & Ke Liu & Ruida Xi & Gan, 2023. "A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Jiewei Lai & Huixin Tan & Jinliang Wang & Lei Ji & Jun Guo & Baoshi Han & Yajun Shi & Qianjin Feng & Wei Yang, 2023. "Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Ying Jiang & Shaobo Ji & Jing Sun & Jianping Huang & Yuanheng Li & Guijin Zou & Teddy Salim & Changxian Wang & Wenlong Li & Haoran Jin & Jie Xu & Sihong Wang & Ting Lei & Xuzhou Yan & Wendy Yen Xian P, 2023. "A universal interface for plug-and-play assembly of stretchable devices," Nature, Nature, vol. 614(7948), pages 456-462, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soosang Chae & Won Jin Choi & Lisa Julia Nebel & Chang Hee Cho & Quinn A. Besford & André Knapp & Pavlo Makushko & Yevhen Zabila & Oleksandr Pylypovskyi & Min Woo Jeong & Stanislav Avdoshenko & Oliver, 2024. "Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Naotaka Kasuya & Tomoki Furukawa & Hiroyuki Ishii & Nobuhiko Kobayashi & Kenji Hirose & Hideaki Takayanagi & Toshihiro Okamoto & Shun Watanabe & Jun Takeya, 2025. "Evolution of electronic correlation in highly doped organic two-dimensional hole gas," Nature Communications, Nature, vol. 16(1), pages 1-6, December.
    3. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yan Shao & Jianfeng Yan & Yinglin Zhi & Chun Li & Qingxian Li & Kaimin Wang & Rui Xia & Xinyue Xiang & Liqian Liu & Guoli Chen & Hanxue Zhang & Daohang Cai & Haochuan Wang & Xing Cheng & Canhui Yang &, 2024. "A universal packaging substrate for mechanically stable assembly of stretchable electronics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Linlin You & Zihan Guo & Chau Yuen & Calvin Yu-Chian Chen & Yan Zhang & H. Vincent Poor, 2025. "A framework reforming personalized Internet of Things by federated meta-learning," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Sizhe Huang & Ruobai Xiao & Shaoting Lin & Zuer Wu & Chen Lin & Geunho Jang & Eunji Hong & Shovit Gupta & Fake Lu & Bo Chen & Xinyue Liu & Atharva Sahasrabudhe & Zicong Zhang & Zhigang He & Alfred J. , 2025. "Anisotropic hydrogel microelectrodes for intraspinal neural recordings in vivo," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    7. Lingxiao Cao & Zhonghao Wang & Daiwei Hu & Haoxuan Dong & Chunchun Qu & Yi Zheng & Chao Yang & Rui Zhang & Chunxiao Xing & Zhen Li & Zhe Xin & Du Chen & Zhenghe Song & Zhizhu He, 2024. "Pressure-constrained sonication activation of flexible printed metal circuit," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Tianyiyi He & Jinge Wang & Donghui Hu & Yanqin Yang & Eunyoung Chae & Chengkuo Lee, 2025. "Epidermal electronic-tattoo for plant immune response monitoring," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Li Yang & Xue Chen & Ankan Dutta & Hui Zhang & Zihan Wang & Mingyang Xin & Shuaijie Du & Guizhi Xu & Huanyu Cheng, 2025. "Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Shuangshuang Wan & Kepeng Wang & Peihong Huang & Xian Guo & Wurui Liu & Yaocheng Li & Jingjing Zhang & Zhiyang Li & Jiacheng Song & Wenjing Yang & Xianzheng Zhang & Xianguang Ding & David Tai Leong & , 2024. "Mechanoelectronic stimulation of autologous extracellular vesicle biosynthesis implant for gut microbiota modulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Falon C. Kalutantirige & Jinlong He & Lehan Yao & Stephen Cotty & Shan Zhou & John W. Smith & Emad Tajkhorshid & Charles M. Schroeder & Jeffrey S. Moore & Hyosung An & Xiao Su & Ying Li & Qian Chen, 2024. "Beyond nothingness in the formation and functional relevance of voids in polymer films," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Sujin Jeong & Hyungsoo Yoon & Lukas Felix Michalek & Geonhee Kim & Jinhyoung Kim & Jiseok Seo & Dahyun Kim & Hwaeun Park & Byeongmoon Lee & Yongtaek Hong, 2024. "Printable, stretchable metal-vapor-desorption layers for high-fidelity patterning in soft, freeform electronics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Liqing Ai & Weikang Lin & Chunyan Cao & Pengyu Li & Xuejiao Wang & Dong Lv & Xin Li & Zhengbao Yang & Xi Yao, 2023. "Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Jie Cao & Xusheng Liu & Jie Qiu & Zhifei Yue & Yang Li & Qian Xu & Yan Chen & Jiewen Chen & Hongfei Cheng & Guozhong Xing & Enming Song & Ming Wang & Qi Liu & Ming Liu, 2024. "Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Tao Liu & Mingyang Zhang & Zhihao Li & Hanjie Dou & Wangyang Zhang & Jiaqian Yang & Pengfan Wu & Dongxiao Li & Xiaojing Mu, 2025. "Machine learning-assisted wearable sensing systems for speech recognition and interaction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58390-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.