IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58448-4.html
   My bibliography  Save this article

Anionic high-entropy doping engineering for electromagnetic wave absorption

Author

Listed:
  • Jiaqi Tao

    (Nanjing University of Aeronautics and Astronautics)

  • Yi Yan

    (Nanjing University of Aeronautics and Astronautics)

  • Jintang Zhou

    (Nanjing University of Aeronautics and Astronautics)

  • Jin Wang

    (Nanjing University of Posts and Telecommunications)

  • Ping Chen

    (Nanjing University)

  • Ruiyang Tan

    (Nanjing University)

  • Linling Xu

    (Nanjing University)

  • Hongbao Zhu

    (Nanjing University of Aeronautics and Astronautics)

  • Wenhui Zhu

    (Nanjing University of Aeronautics and Astronautics)

  • Hexia Huang

    (Nanjing University of Aeronautics and Astronautics
    Nanjing University of Aeronautics and Astronautics)

  • Xuewei Tao

    (Nanjing Institute of Technology)

  • Zhengjun Yao

    (Nanjing University of Aeronautics and Astronautics)

Abstract

High-entropy doping (HED) engineering surpasses conventional methods for optimizing atomic configurations and electronic structures, opening new paths for developing advanced electromagnetic wave absorbing (EWA) materials. However, the application of anionic HED engineering to tailor EWA mechanisms remains unexplored. Herein, we employ in situ pyrolysis combined with a three-stage solvent thermal doping procedure to systematically induce anion multibody interactions, thereby facilitating the inheritance and accumulation of beneficial EWA properties. The research shows that anions with various electronegativities precisely balance free charges and create a significant localized charge imbalance, triggering the ‘directional cocktail effect’. This effect induces an optimal dielectric loss mechanism and enhances the EWA performance. With only 7.5 wt% filling, the effective absorption bandwidth and minimum reflection loss are 7.05 GHz and −60 dB, respectively. Overall, we report an anionic HED engineering within thin a graphite framework, which may be conceptually extendable for electromagnetic modulation of other two-dimensional van der Waals EWA materials.

Suggested Citation

  • Jiaqi Tao & Yi Yan & Jintang Zhou & Jin Wang & Ping Chen & Ruiyang Tan & Linling Xu & Hongbao Zhu & Wenhui Zhu & Hexia Huang & Xuewei Tao & Zhengjun Yao, 2025. "Anionic high-entropy doping engineering for electromagnetic wave absorption," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58448-4
    DOI: 10.1038/s41467-025-58448-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58448-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58448-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hualiang Lv & Yuxing Yao & Mingyue Yuan & Guanyu Chen & Yuchao Wang & Longjun Rao & Shucong Li & Ufuoma I. Kara & Robert L. Dupont & Cheng Zhang & Boyuan Chen & Bo Liu & Xiaodi Zhou & Renbing Wu & Sol, 2024. "Functional nanoporous graphene superlattice," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Bo Cai & Lu Zhou & Pei-Yan Zhao & Hua-Long Peng & Zhi-Ling Hou & Pengfei Hu & Li-Min Liu & Guang-Sheng Wang, 2024. "Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Rui Zhang & Chunyang Wang & Peichao Zou & Ruoqian Lin & Lu Ma & Liang Yin & Tianyi Li & Wenqian Xu & Hao Jia & Qiuyan Li & Sami Sainio & Kim Kisslinger & Stephen E. Trask & Steven N. Ehrlich & Yang Ya, 2022. "Compositionally complex doping for zero-strain zero-cobalt layered cathodes," Nature, Nature, vol. 610(7930), pages 67-73, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhu Cheng & Hang Liu & Menghang Zhang & Hui Pan & Chuanchao Sheng & Wei Li & Marnix Wagemaker & Ping He & Haoshen Zhou, 2025. "Realizing four-electron conversion chemistry for all-solid-state Li||I2 batteries at room temperature," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Yubin He & Chunyang Wang & Rui Zhang & Peichao Zou & Zhouyi Chen & Seong-Min Bak & Stephen E. Trask & Yonghua Du & Ruoqian Lin & Enyuan Hu & Huolin L. Xin, 2024. "A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Weihao Zeng & Fanjie Xia & Juan Wang & Jinlong Yang & Haoyang Peng & Wei Shu & Quan Li & Hong Wang & Guan Wang & Shichun Mu & Jinsong Wu, 2024. "Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Liuliu Han & Fernando Maccari & Ivan Soldatov & Nicolas J. Peter & Isnaldi R. Souza Filho & Rudolf Schäfer & Oliver Gutfleisch & Zhiming Li & Dierk Raabe, 2023. "Strong and ductile high temperature soft magnets through Widmanstätten precipitates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Zhuoran Xia & Xiangyi Huang & Jiaqi Liu & Wen Dai & Liuxiong Luo & Zhaohan Jiang & Shen Gong & Yuyuan Zhao & Zhou Li, 2024. "Designing Ni2MnSn Heusler magnetic nanoprecipitate in copper alloy for increased strength and electromagnetic shielding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Hang Li & Hao Liu & Shunrui Luo & Jordi Arbiol & Emmanuelle Suard & Thomas Bergfeldt & Alexander Missyul & Volodymyr Baran & Stefan Mangold & Yongchao Zhang & Weibo Hua & Michael Knapp & Helmut Ehrenb, 2025. "Tuning Li occupancy and local structures for advanced Co-free Ni-rich positive electrodes," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    9. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    10. Tonghuan Yang & Kun Zhang & Yuxuan Zuo & Jin Song & Yali Yang & Chuan Gao & Tao Chen & Hangchao Wang & Wukun Xiao & Zewen Jiang & Dingguo Xia, 2024. "Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries," Nature Sustainability, Nature, vol. 7(9), pages 1204-1214, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58448-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.