Author
Listed:
- Alexis Weinreb
(Yale University School of Medicine
Yale University School of Medicine)
- Erdem Varol
(New York University)
- Alec Barrett
(Yale University School of Medicine
Yale University School of Medicine)
- Rebecca M. McWhirter
(Vanderbilt University)
- Seth R. Taylor
(Vanderbilt University
BYU)
- Isabel Courtney
(Vanderbilt University)
- Manasa Basavaraju
(Yale University School of Medicine
Yale University School of Medicine)
- Abigail Poff
(Vanderbilt University)
- John A. Tipps
(Vanderbilt University)
- Becca Collings
(Vanderbilt University)
- Smita Krishnaswamy
(Yale University School of Medicine
Yale University)
- David M. Miller
(Vanderbilt University)
- Marc Hammarlund
(Yale University School of Medicine
Yale University School of Medicine)
Abstract
Alternative splicing is a key mechanism that shapes transcriptomes, helping to define neuronal identity and modulate function. Here, we present an atlas of alternative splicing across the nervous system of Caenorhabditis elegans. Our analysis identifies novel alternative splicing in key neuronal genes such as unc-40/DCC and sax-3/ROBO. Globally, we delineate patterns of differential alternative splicing in almost 2000 genes, and estimate that a quarter of neuronal genes undergo differential splicing. We introduce a web interface for examination of splicing patterns across neuron types. We explore the relationship between neuron type and splicing, and between splicing and differential gene expression. We identify RNA features that correlate with differential alternative splicing and describe the enrichment of microexons. Finally, we compute a splicing regulatory network that can be used to generate hypotheses on the regulation and targets of alternative splicing in neurons.
Suggested Citation
Alexis Weinreb & Erdem Varol & Alec Barrett & Rebecca M. McWhirter & Seth R. Taylor & Isabel Courtney & Manasa Basavaraju & Abigail Poff & John A. Tipps & Becca Collings & Smita Krishnaswamy & David M, 2025.
"Alternative splicing across the C. elegans nervous system,"
Nature Communications, Nature, vol. 16(1), pages 1-21, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58293-5
DOI: 10.1038/s41467-025-58293-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58293-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.