IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58164-z.html
   My bibliography  Save this article

A 2D hybrid perovskite ferroelectric with switchable polarization and photoelectric robustness down to monolayer

Author

Listed:
  • Yuzhong Hu

    (The University of Warwick
    Heidelberg University)

  • Haidong Lu

    (University of Nebraska Lincoln)

  • Shehr Bano Masood

    (University of Nebraska Lincoln)

  • Clemens Göhler

    (Heidelberg University)

  • Shangpu Liu

    (Universität Heidelberg)

  • Alexei Gruverman

    (University of Nebraska Lincoln)

  • Marin Alexe

    (The University of Warwick)

Abstract

The continuous dimensional scaling of semiconductor and logic photoelectric device requires ferroelectrics to possess robust photoelectric activity and switchable polarization at the nanoscale. However, traditional ferroelectrics such as oxide perovskites generally suffer from relatively large bandgap and deteriorated ferroelectricity in ultrathin forms, while the polarization in many transition metal dichalcogenides is related to inter-layer effects, leading to ferroelectricity that only exists in flakes with a certain layer number and particular stacking forms. The associated challenging fabrication and high-cost synthesis of inorganic ferroelectrics currently render mass industrial production of ultrathin ferroelectric semiconductors impossible. Here with (isopentylammonium)2(ethylammonium)2Pb3I10, we report an organic-inorganic hybrid perovskite nanoflake with cheap solution synthesis, switchable polarization, a narrow bandgap (1.86 eV to 2.21 eV form bulk to monolayer), and robust photoelectric properties down to the monolayer. The present work reveals the great potential of 2D hybrid perovskite ferroelectrics as low-cost ferroelectric semiconductors at the nanoscale.

Suggested Citation

  • Yuzhong Hu & Haidong Lu & Shehr Bano Masood & Clemens Göhler & Shangpu Liu & Alexei Gruverman & Marin Alexe, 2025. "A 2D hybrid perovskite ferroelectric with switchable polarization and photoelectric robustness down to monolayer," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58164-z
    DOI: 10.1038/s41467-025-58164-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58164-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58164-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei-Qiang Liao & Yi Zhang & Chun-Li Hu & Jiang-Gao Mao & Heng-Yun Ye & Peng-Fei Li & Songping D. Huang & Ren-Gen Xiong, 2015. "A lead-halide perovskite molecular ferroelectric semiconductor," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. Shiguo Han & Maofan Li & Yi Liu & Wuqian Guo & Mao-Chun Hong & Zhihua Sun & Junhua Luo, 2021. "Tailoring of a visible-light-absorbing biaxial ferroelectric towards broadband self-driven photodetection," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Fernando Rubio-Marcos & Adolfo Del Campo & Pascal Marchet & Jose F. Fernández, 2015. "Ferroelectric domain wall motion induced by polarized light," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    4. Akash Bhatnagar & Ayan Roy Chaudhuri & Young Heon Kim & Dietrich Hesse & Marin Alexe, 2013. "Role of domain walls in the abnormal photovoltaic effect in BiFeO3," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibukun Olaniyan & Iurii Tikhonov & Valentin Väinö Hevelke & Sven Wiesner & Leifeng Zhang & Anna Razumnaya & Nikolay Cherkashin & Sylvie Schamm-Chardon & Igor Lukyanchuk & Dong-Jik Kim & Catherine Dubo, 2024. "Switchable topological polar states in epitaxial BaTiO3 nanoislands on silicon," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Aleksandrova, M.P. & Tsanev, T.D. & Pandiev, I.M. & Dobrikov, G.H., 2020. "Study of piezoelectric behaviour of sputtered KNbO3 nanocoatings for flexible energy harvesting," Energy, Elsevier, vol. 205(C).
    3. Wei Qin & Wajid Ali & Jianfeng Wang & Yong Liu & Xiaolan Yan & Pengfei Zhang & Zhaochi Feng & Hao Tian & Yanfeng Yin & Wenming Tian & Can Li, 2023. "Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Fan Zhang & Zhe Wang & Lixuan Liu & Anmin Nie & Yanxing Li & Yongji Gong & Wenguang Zhu & Chenggang Tao, 2024. "Atomic-scale manipulation of polar domain boundaries in monolayer ferroelectric In2Se3," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Xu Zhang & Tongshuai Zhu & Shuai Zhang & Zhongqiang Chen & Anke Song & Chong Zhang & Rongzheng Gao & Wei Niu & Yequan Chen & Fucong Fei & Yilin Tai & Guoan Li & Binghui Ge & Wenkai Lou & Jie Shen & Ha, 2024. "Light-induced giant enhancement of nonreciprocal transport at KTaO3-based interfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. S. Alnujaim & A. Bouhemadou & M. Chegaar & A. Guechi & S. Bin-Omran & R. Khenata & Y. Al-Douri & W. Yang & H. Lu, 2022. "Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(7), pages 1-16, July.
    7. Yue Li & Jun Fu & Xiaoyu Mao & Chen Chen & Heng Liu & Ming Gong & Hualing Zeng, 2021. "Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Zhouxiaosong Zeng & Zhiqiang Tian & Yufan Wang & Cuihuan Ge & Fabian Strauß & Kai Braun & Patrick Michel & Lanyu Huang & Guixian Liu & Dong Li & Marcus Scheele & Mingxing Chen & Anlian Pan & Xiao Wang, 2024. "Dual polarization-enabled ultrafast bulk photovoltaic response in van der Waals heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Run Zhao & Chao Yang & Hongguang Wang & Kai Jiang & Hua Wu & Shipeng Shen & Le Wang & Young Sun & Kuijuan Jin & Ju Gao & Li Chen & Haiyan Wang & Judith L. MacManus-Driscoll & Peter A. Aken & Jiawang H, 2022. "Emergent multiferroism with magnetodielectric coupling in EuTiO3 created by a negative pressure control of strong spin-phonon coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Onur Yildirim & Matteo Bonomo & Nadia Barbero & Cesare Atzori & Bartolomeo Civalleri & Francesca Bonino & Guido Viscardi & Claudia Barolo, 2020. "Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies," Energies, MDPI, vol. 13(21), pages 1-48, October.
    11. Jinhyoung Lee & Gunhoo Woo & Jinill Cho & Sihoon Son & Hyelim Shin & Hyunho Seok & Min-Jae Kim & Eungchul Kim & Ziyang Wang & Boseok Kang & Won-Jun Jang & Taesung Kim, 2024. "Free-standing two-dimensional ferro-ionic memristor," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Zhenyue Wu & Shunning Li & Yasmin Mohamed Yousry & Walter P. D. Wong & Xinyun Wang & Teng Ma & Zhefeng Chen & Yan Shao & Weng Heng Liew & Kui Yao & Feng Pan & Kian Ping Loh, 2022. "Intercalation-driven ferroelectric-to-ferroelastic conversion in a layered hybrid perovskite crystal," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58164-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.