IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58057-1.html
   My bibliography  Save this article

Dynamic and asymmetric colloidal molecules

Author

Listed:
  • Huang Fang

    (Fudan University)

  • Qiong Gao

    (Fudan University)

  • Yujie Rong

    (Fudan University)

  • Yanshuang Chen

    (Fudan University)

  • Jiping Huang

    (Fudan University
    Fudan University)

  • Hua Tong

    (University of Science and Technology of China)

  • Zhihong Nie

    (Fudan University
    Fudan University)

  • Hajime Tanaka

    (University of Tokyo
    Institute of Industrial Science, University of Tokyo)

  • Wei Li

    (Fudan University
    Fudan University)

  • Peng Tan

    (Fudan University
    Fudan University)

Abstract

“Colloidal molecules” represent artificial colloidal clusters replicating the geometries of molecules and exhibiting flexibility and fluctuations similar to macromolecules and proteins. Their dynamic and anisotropic characters make them unique and indispensable building blocks for creating hierarchically organized superstructures. Despite the progress in synthesizing and assembling colloidal molecules, unveiling their dynamic characters is challenging in experiments. Here, we employ real-time three-dimensional imaging and simulations to reveal dynamic colloidal molecule structures in micrometre-sized colloidal-emulsion models with tunable electrostatic interactions. Our findings reveal that colloidal molecules’ dynamic structures are inherently asymmetric, with angular symmetry emerging through continuous ordering from a liquid-like configuration. We further develop an effective method to guide the ordering of colloidal molecules towards a desired structure by dynamically adjusting the ionic strength in the solvent during the ordering process. We validate this method using molecular dynamics simulations and propose a practical protocol for its experimental implementation. Our research contributes to a clearer physical understanding of dynamic colloidal molecules and offers potential solutions to the complexities inherent in their formation process.

Suggested Citation

  • Huang Fang & Qiong Gao & Yujie Rong & Yanshuang Chen & Jiping Huang & Hua Tong & Zhihong Nie & Hajime Tanaka & Wei Li & Peng Tan, 2025. "Dynamic and asymmetric colloidal molecules," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58057-1
    DOI: 10.1038/s41467-025-58057-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58057-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58057-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Piet J. M. Swinkels & Zhe Gong & Stefano Sacanna & Eva G. Noya & Peter Schall, 2023. "Visualizing defect dynamics by assembling the colloidal graphene lattice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. S. Sacanna & W. T. M. Irvine & P. M. Chaikin & D. J. Pine, 2010. "Lock and key colloids," Nature, Nature, vol. 464(7288), pages 575-578, March.
    3. Rui Shi & Anthony J. Cooper & Hajime Tanaka, 2023. "Publisher Correction: Impact of hierarchical water dipole orderings on the dynamics of aqueous salt solutions," Nature Communications, Nature, vol. 14(1), pages 1-2, December.
    4. Minhuan Li & Zhengyuan Yue & Yanshuang Chen & Hua Tong & Hajime Tanaka & Peng Tan, 2021. "Revealing thermally-activated nucleation pathways of diffusionless solid-to-solid transition," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Marie T. Casey & Raynaldo T. Scarlett & W. Benjamin Rogers & Ian Jenkins & Talid Sinno & John C. Crocker, 2012. "Driving diffusionless transformations in colloidal crystals using DNA handshaking," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    6. Qian Chen & Sung Chul Bae & Steve Granick, 2011. "Directed self-assembly of a colloidal kagome lattice," Nature, Nature, vol. 469(7330), pages 381-384, January.
    7. Rui Shi & Anthony J. Cooper & Hajime Tanaka, 2023. "Impact of hierarchical water dipole orderings on the dynamics of aqueous salt solutions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Peng & Wei Li & Tim Still & Arjun G. Yodh & Yilong Han, 2023. "In situ observation of coalescence of nuclei in colloidal crystal-crystal transitions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Piet J. M. Swinkels & Zhe Gong & Stefano Sacanna & Eva G. Noya & Peter Schall, 2023. "Visualizing defect dynamics by assembling the colloidal graphene lattice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Dengping Lyu & Wei Xu & Jae Elise L. Payong & Tianran Zhang & Yufeng Wang, 2022. "Low-dimensional assemblies of metal-organic framework particles and mutually coordinated anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Tianran Zhang & Dengping Lyu & Wei Xu & Xuan Feng & Ran Ni & Yufeng Wang, 2023. "Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Minchao Liu & Cheng Shang & Tiancong Zhao & Hongyue Yu & Yufang Kou & Zirui Lv & Mengmeng Hou & Fan Zhang & Qiaowei Li & Dongyuan Zhao & Xiaomin Li, 2023. "Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal–organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Nogueira, T.P.O. & Bordin, José Rafael, 2022. "Patterns in 2D core-softened systems: From sphere to dumbbell colloids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    7. Pengji Zhou & Sharon C. Glotzer, 2021. "Inverse design of isotropic pair potentials using digital alchemy with a generalized Fourier potential," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-10, December.
    8. Agnese I. Curatolo & Ofer Kimchi & Carl P. Goodrich & Ryan K. Krueger & Michael P. Brenner, 2023. "A computational toolbox for the assembly yield of complex and heterogeneous structures," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Guangdong Chen & Hanwen Pei & Xuefei Zhang & Wei Shi & Mingjie Liu & Charl F. J. Faul & Bai Yang & Yan Zhao & Kun Liu & Zhongyuan Lu & Zhihong Nie & Yang Yang, 2022. "Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Menghao Yang & Yunsheng Liu & Yifei Mo, 2023. "Lithium crystallization at solid interfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Solenn Riedel & Ludwig A. Hoffmann & Luca Giomi & Daniela J. Kraft, 2024. "Designing highly efficient interlocking interactions in anisotropic active particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Qianhong Yang & Maoqiang Jiang & Francesco Picano & Lailai Zhu, 2024. "Shaping active matter from crystalline solids to active turbulence," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. David Doan & John Kulikowski & X. Wendy Gu, 2024. "Direct observation of phase transitions in truncated tetrahedral microparticles under quasi-2D confinement," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Gnan, Nicoletta, 2023. "Lecture notes of the 15th international summer school on Fundamental Problems in Statistical Physics: Colloidal dispersions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 631(C).
    16. Ahyoung Kim & Thi Vo & Hyosung An & Progna Banerjee & Lehan Yao & Shan Zhou & Chansong Kim & Delia J. Milliron & Sharon C. Glotzer & Qian Chen, 2022. "Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer grafting," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Alexander Hensley & Thomas E. Videbæk & Hunter Seyforth & William M. Jacobs & W. Benjamin Rogers, 2023. "Macroscopic photonic single crystals via seeded growth of DNA-coated colloids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Gan Wang & Piotr Nowakowski & Nima Farahmand Bafi & Benjamin Midtvedt & Falko Schmidt & Agnese Callegari & Ruggero Verre & Mikael Käll & S. Dietrich & Svyatoslav Kondrat & Giovanni Volpe, 2024. "Nanoalignment by critical Casimir torques," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58057-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.