IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37222-4.html
   My bibliography  Save this article

Visualizing defect dynamics by assembling the colloidal graphene lattice

Author

Listed:
  • Piet J. M. Swinkels

    (University of Amsterdam)

  • Zhe Gong

    (New York University)

  • Stefano Sacanna

    (New York University)

  • Eva G. Noya

    (CSIC)

  • Peter Schall

    (University of Amsterdam)

Abstract

Graphene has been under intense scientific interest because of its remarkable optical, mechanical and electronic properties. Its honeycomb structure makes it an archetypical two-dimensional material exhibiting a photonic and phononic band gap with topologically protected states. Here, we assemble colloidal graphene, the analogue of atomic graphene using pseudo-trivalent patchy particles, allowing particle-scale insight into crystal growth and defect dynamics. We directly observe the formation and healing of common defects, like grain boundaries and vacancies using confocal microscopy. We identify a pentagonal defect motif that is kinetically favoured in the early stages of growth, and acts as seed for more extended defects in the later stages. We determine the conformational energy of the crystal from the bond saturation and bond angle distortions, and follow its evolution through the energy landscape upon defect rearrangement and healing. These direct observations reveal that the origins of the most common defects lie in the early stages of graphene assembly, where pentagons are kinetically favoured over the equilibrium hexagons of the honeycomb lattice, subsequently stabilized during further growth. Our results open the door to the assembly of complex 2D colloidal materials and investigation of their dynamical, mechanical and optical properties.

Suggested Citation

  • Piet J. M. Swinkels & Zhe Gong & Stefano Sacanna & Eva G. Noya & Peter Schall, 2023. "Visualizing defect dynamics by assembling the colloidal graphene lattice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37222-4
    DOI: 10.1038/s41467-023-37222-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37222-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37222-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Hertlein & L. Helden & A. Gambassi & S. Dietrich & C. Bechinger, 2008. "Direct measurement of critical Casimir forces," Nature, Nature, vol. 451(7175), pages 172-175, January.
    2. William T. M. Irvine & Vincenzo Vitelli & Paul M. Chaikin, 2010. "Pleats in crystals on curved surfaces," Nature, Nature, vol. 468(7326), pages 947-951, December.
    3. S. Sacanna & W. T. M. Irvine & P. M. Chaikin & D. J. Pine, 2010. "Lock and key colloids," Nature, Nature, vol. 464(7288), pages 575-578, March.
    4. Qian Chen & Sung Chul Bae & Steve Granick, 2011. "Directed self-assembly of a colloidal kagome lattice," Nature, Nature, vol. 469(7330), pages 381-384, January.
    5. Yu Wang & Yufeng Wang & Xiaolong Zheng & Étienne Ducrot & Jeremy S. Yodh & Marcus Weck & David J. Pine, 2015. "Crystallization of DNA-coated colloids," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    6. Rodrigo E. Guerra & Colm P. Kelleher & Andrew D. Hollingsworth & Paul M. Chaikin, 2018. "Addendum: Freezing on a sphere," Nature, Nature, vol. 560(7717), pages 25-25, August.
    7. Rodrigo E. Guerra & Colm P. Kelleher & Andrew D. Hollingsworth & Paul M. Chaikin, 2018. "Freezing on a sphere," Nature, Nature, vol. 554(7692), pages 346-350, February.
    8. Pinshane Y. Huang & Carlos S. Ruiz-Vargas & Arend M. van der Zande & William S. Whitney & Mark P. Levendorf & Joshua W. Kevek & Shivank Garg & Jonathan S. Alden & Caleb J. Hustedt & Ye Zhu & Jiwoong P, 2011. "Grains and grain boundaries in single-layer graphene atomic patchwork quilts," Nature, Nature, vol. 469(7330), pages 389-392, January.
    9. Peter Schall & Itai Cohen & David A. Weitz & Frans Spaepen, 2006. "Visualizing dislocation nucleation by indenting colloidal crystals," Nature, Nature, vol. 440(7082), pages 319-323, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilya Svetlizky & Seongsoo Kim & David A. Weitz & Frans Spaepen, 2023. "Dislocation interactions during plastic relaxation of epitaxial colloidal crystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Dengping Lyu & Wei Xu & Jae Elise L. Payong & Tianran Zhang & Yufeng Wang, 2022. "Low-dimensional assemblies of metal-organic framework particles and mutually coordinated anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Tianran Zhang & Dengping Lyu & Wei Xu & Xuan Feng & Ran Ni & Yufeng Wang, 2023. "Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. H. Dehne & A. Reitenbach & A. R. Bausch, 2021. "Reversible and spatiotemporal control of colloidal structure formation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Minchao Liu & Cheng Shang & Tiancong Zhao & Hongyue Yu & Yufang Kou & Zirui Lv & Mengmeng Hou & Fan Zhang & Qiaowei Li & Dongyuan Zhao & Xiaomin Li, 2023. "Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal–organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Li Tian & Clemens Bechinger, 2022. "Surface melting of a colloidal glass," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    7. Nogueira, T.P.O. & Bordin, José Rafael, 2022. "Patterns in 2D core-softened systems: From sphere to dumbbell colloids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    8. Xin Gao & Liming Zheng & Fang Luo & Jun Qian & Jingyue Wang & Mingzhi Yan & Wendong Wang & Qinci Wu & Junchuan Tang & Yisen Cao & Congwei Tan & Jilin Tang & Mengjian Zhu & Yani Wang & Yanglizhi Li & L, 2022. "Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Pengji Zhou & Sharon C. Glotzer, 2021. "Inverse design of isotropic pair potentials using digital alchemy with a generalized Fourier potential," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-10, December.
    10. Kanth, Jampa Maruthi Pradeep & Anishetty, Ramesh, 2013. "Hydrophobic force, a Casimir-like effect due to hydrogen-bond fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4804-4823.
    11. Marloes H. Bistervels & Balázs Antalicz & Marko Kamp & Hinco Schoenmaker & Willem L. Noorduin, 2023. "Light-driven nucleation, growth, and patterning of biorelevant crystals using resonant near-infrared laser heating," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Agnese I. Curatolo & Ofer Kimchi & Carl P. Goodrich & Ryan K. Krueger & Michael P. Brenner, 2023. "A computational toolbox for the assembly yield of complex and heterogeneous structures," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Guangdong Chen & Hanwen Pei & Xuefei Zhang & Wei Shi & Mingjie Liu & Charl F. J. Faul & Bai Yang & Yan Zhao & Kun Liu & Zhongyuan Lu & Zhihong Nie & Yang Yang, 2022. "Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Plans, I. & Carpio, A. & Bonilla, L.L., 2009. "Toy nanoindentation model and incipient plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1623-1630.
    15. Amore, Paolo & Jacobo, Martin, 2019. "Thomson problem in one dimension: Minimal energy configurations of N charges on a curve," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 256-266.
    16. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    17. Joep Rouwhorst & Christopher Ness & Simeon Stoyanov & Alessio Zaccone & Peter Schall, 2020. "Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    18. Fan Cui & Sophie Marbach & Jeana Aojie Zheng & Miranda Holmes-Cerfon & David J. Pine, 2022. "Comprehensive view of microscopic interactions between DNA-coated colloids," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Sara Molinari & Robert F. Tesoriero & Dong Li & Swetha Sridhar & Rong Cai & Jayashree Soman & Kathleen R. Ryan & Paul D. Ashby & Caroline M. Ajo-Franklin, 2022. "A de novo matrix for macroscopic living materials from bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Chi Zhang & José Muñetón Díaz & Augustin Muster & Diego R. Abujetas & Luis S. Froufe-Pérez & Frank Scheffold, 2024. "Determining intrinsic potentials and validating optical binding forces between colloidal particles using optical tweezers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37222-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.