Observation of a non-Hermitian supersonic mode on a trapped-ion quantum computer
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-57930-3
Download full text from publisher
References listed on IDEAS
- Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
- Ruizhe Shen & Tianqi Chen & Bo Yang & Ching Hua Lee, 2025. "Observation of the non-Hermitian skin effect and Fermi skin on a digital quantum computer," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
- Alberto Peruzzo & Jarrod McClean & Peter Shadbolt & Man-Hong Yung & Xiao-Qi Zhou & Peter J. Love & Alán Aspuru-Guzik & Jeremy L. O’Brien, 2014. "A variational eigenvalue solver on a photonic quantum processor," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
- Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Philip Richerme & Zhe-Xuan Gong & Aaron Lee & Crystal Senko & Jacob Smith & Michael Foss-Feig & Spyridon Michalakis & Alexey V. Gorshkov & Christopher Monroe, 2014. "Non-local propagation of correlations in quantum systems with long-range interactions," Nature, Nature, vol. 511(7508), pages 198-201, July.
- Balázs Dóra & Markus Heyl & Roderich Moessner, 2019. "The Kibble-Zurek mechanism at exceptional points," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexander Gresch & Martin Kliesch, 2025. "Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Enrico Fontana & Dylan Herman & Shouvanik Chakrabarti & Niraj Kumar & Romina Yalovetzky & Jamie Heredge & Shree Hari Sureshbabu & Marco Pistoia, 2024. "Characterizing barren plateaus in quantum ansätze with the adjoint representation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
- Yuxuan Du & Min-Hsiu Hsieh & Dacheng Tao, 2025. "Efficient learning for linear properties of bounded-gate quantum circuits," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
- Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Michael Ragone & Bojko N. Bakalov & Frédéric Sauvage & Alexander F. Kemper & Carlos Ortiz Marrero & Martín Larocca & M. Cerezo, 2024. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
- Huang, Chenyi & Zhang, Shibin & Chang, Yan & Yan, Lily, 2024. "Quantum metric learning with fuzzy-informed learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
- Antoine Jacquier & Oleksiy Kondratyev & Gordon Lee & Mugad Oumgari, 2023. "Quantum Computing for Financial Mathematics," Papers 2311.06621, arXiv.org.
- Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
- Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
- Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Algorithms," Contributions to Economics, in: Quantum Technology for Economists, chapter 0, pages 37-103, Springer.
- Junyu Liu & Minzhao Liu & Jin-Peng Liu & Ziyu Ye & Yunfei Wang & Yuri Alexeev & Jens Eisert & Liang Jiang, 2024. "Towards provably efficient quantum algorithms for large-scale machine-learning models," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
- He, Zhimin & Deng, Maijie & Zheng, Shenggen & Li, Lvzhou & Situ, Haozhen, 2023. "GSQAS: Graph Self-supervised Quantum Architecture Search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Wang, Shaoxuan & Shen, Yingtong & Liu, Xinjian & Zhang, Haoying & Wang, Yukun, 2024. "Variational quantum entanglement classification discrimination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
- Zhao, Xiumei & Li, Yongmei & Li, Jing & Wang, Shasha & Wang, Song & Qin, Sujuan & Gao, Fei, 2024. "Near-term quantum algorithm for solving the MaxCut problem with fewer quantum resources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
- Sofiene Jerbi & Lukas J. Fiderer & Hendrik Poulsen Nautrup & Jonas M. Kübler & Hans J. Briegel & Vedran Dunjko, 2023. "Quantum machine learning beyond kernel methods," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57930-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.