IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57664-2.html
   My bibliography  Save this article

Hypergraph reconstruction from dynamics

Author

Listed:
  • Robin Delabays

    (University of Applied Sciences of Western Switzerland HES-SO)

  • Giulia De Pasquale

    (Eindhoven University of Technology)

  • Florian Dörfler

    (ETH Zürich)

  • Yuanzhao Zhang

    (Santa Fe Institute)

Abstract

A plethora of methods have been developed in the past two decades to infer the underlying network structure of an interconnected system from its collective dynamics. However, methods capable of inferring nonpairwise interactions are only starting to appear. Here, we develop an inference algorithm based on sparse identification of nonlinear dynamics (SINDy) to reconstruct hypergraphs and simplicial complexes from time-series data. Our model-free method does not require information about node dynamics or coupling functions, making it applicable to complex systems that do not have a reliable mathematical description. We first benchmark the new method on synthetic data generated from Kuramoto and Lorenz dynamics. We then use it to infer the effective connectivity in the brain from resting-state EEG data, which reveals significant contributions from non-pairwise interactions in shaping the macroscopic brain dynamics.

Suggested Citation

  • Robin Delabays & Giulia De Pasquale & Florian Dörfler & Yuanzhao Zhang, 2025. "Hypergraph reconstruction from dynamics," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57664-2
    DOI: 10.1038/s41467-025-57664-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57664-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57664-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacopo Grilli & György Barabás & Matthew J. Michalska-Smith & Stefano Allesina, 2017. "Higher-order interactions stabilize dynamics in competitive network models," Nature, Nature, vol. 548(7666), pages 210-213, August.
    2. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Hanlin Sun & Filippo Radicchi & Jürgen Kurths & Ginestra Bianconi, 2023. "The dynamic nature of percolation on networks with triadic interactions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. I. Bonamassa & B. Gross & J. Kertész & S. Havlin, 2025. "Hybrid universality classes of systemic cascades," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Almiala, Into & Aalto, Henrik & Kuikka, Vesa, 2023. "Influence spreading model for partial breakthrough effects on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Krishnagopal, Sanjukta & Bianconi, Ginestra, 2023. "Topology and dynamics of higher-order multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Andrea Santoro & Federico Battiston & Maxime Lucas & Giovanni Petri & Enrico Amico, 2024. "Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Hu, Xin & Wang, Zhishuang & Sun, Qingyi & Chen, Jiaxing & Zhao, Dawei & Xia, Chengyi, 2024. "Coupled propagation between one communicable disease and related two types of information on multiplex networks with simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    7. Fariello, Ricardo & de Aguiar, Marcus A.M., 2024. "Third order interactions shift the critical coupling in multidimensional Kuramoto models," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    8. Li, Tianyu & Wu, Yong & Ding, Qianming & Xie, Ying & Yu, Dong & Yang, Lijian & Jia, Ya, 2024. "Social contagion in high-order network with mutation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    9. Wang, Yi & Zhao, Yi, 2024. "Synchronization of directed higher-order networks via pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    10. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    11. Li, Zhaohui & Li, Xinyu & Li, Mindi & Zhang, Kexin & Zhang, Xi & Zhou, Xiaoxia, 2024. "Evaluation of human epileptic brain networks by constructing simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    12. Zhang, Kebo & Hong, Xiao & Han, Yuexing & Wang, Bing, 2024. "Interplay of simplicial information propagation and epidemic spreading on multiplex metapopulation networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    13. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Zhang, Renquan & Wei, Ting & Sun, Yifan & Pei, Sen, 2024. "Influence maximization based on simplicial contagion models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    15. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Higher-order percolation in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Martina Contisciani & Federico Battiston & Caterina De Bacco, 2022. "Inference of hyperedges and overlapping communities in hypergraphs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Peng, Hao & Zhao, Yifan & Zhao, Dandan & Zhong, Ming & Hu, Zhaolong & Han, Jianming & Li, Runchao & Wang, Wei, 2023. "Robustness of higher-order interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Dai, X. & Kovalenko, K. & Molodyk, M. & Wang, Z. & Li, X. & Musatov, D. & Raigorodskii, A.M. & Alfaro-Bittner, K. & Cooper, G.D. & Bianconi, G. & Boccaletti, S., 2021. "D-dimensional oscillators in simplicial structures: Odd and even dimensions display different synchronization scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Dorchain, Marie & Segnou, Wilfried & Muolo, Riccardo & Carletti, Timoteo, 2024. "Impact of directionality on the emergence of Turing patterns on m-directed higher-order structures," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57664-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.