IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57352-1.html
   My bibliography  Save this article

The road to commercial success for neuromorphic technologies

Author

Listed:
  • Dylan Richard Muir

    (SynSense
    University of Western Australia)

  • Sadique Sheik

    (SynSense
    Unique)

Abstract

Neuromorphic technologies adapt biological neural principles to synthesise high-efficiency computational devices, characterised by continuous real-time operation and sparse event-based communication. After several false starts, a confluence of advances now promises widespread commercial adoption. Gradient-based training of deep spiking neural networks is now an off-the-shelf technique for building general-purpose Neuromorphic applications, with open-source tools underwritten by theoretical results. Analog and mixed-signal Neuromorphic circuit designs are being replaced by digital equivalents in newer devices, simplifying application deployment while maintaining computational benefits. Designs for in-memory computing are also approaching commercial maturity. Solving two key problems—how to program general Neuromorphic applications; and how to deploy them at scale—clears the way to commercial success of Neuromorphic processors. Ultra-low-power Neuromorphic technology will find a home in battery-powered systems, local compute for internet-of-things devices, and consumer wearables. Inspiration from uptake of tensor processors and GPUs can help the field overcome remaining hurdles.

Suggested Citation

  • Dylan Richard Muir & Sadique Sheik, 2025. "The road to commercial success for neuromorphic technologies," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57352-1
    DOI: 10.1038/s41467-025-57352-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57352-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57352-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vinay Joshi & Manuel Le Gallo & Simon Haefeli & Irem Boybat & S. R. Nandakumar & Christophe Piveteau & Martino Dazzi & Bipin Rajendran & Abu Sebastian & Evangelos Eleftheriou, 2020. "Accurate deep neural network inference using computational phase-change memory," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Logan G. Wright & Tatsuhiro Onodera & Martin M. Stein & Tianyu Wang & Darren T. Schachter & Zoey Hu & Peter L. McMahon, 2022. "Deep physical neural networks trained with backpropagation," Nature, Nature, vol. 601(7894), pages 549-555, January.
    3. Jason Yik & Korneel Berghe & Douwe Blanken & Younes Bouhadjar & Maxime Fabre & Paul Hueber & Weijie Ke & Mina A. Khoei & Denis Kleyko & Noah Pacik-Nelson & Alessandro Pierro & Philipp Stratmann & Pao-, 2025. "The neurobench framework for benchmarking neuromorphic computing algorithms and systems," Nature Communications, Nature, vol. 16(1), pages 1-24, December.
    4. Weier Wan & Rajkumar Kubendran & Clemens Schaefer & Sukru Burc Eryilmaz & Wenqiang Zhang & Dabin Wu & Stephen Deiss & Priyanka Raina & He Qian & Bin Gao & Siddharth Joshi & Huaqiang Wu & H.-S. Philip , 2022. "A compute-in-memory chip based on resistive random-access memory," Nature, Nature, vol. 608(7923), pages 504-512, August.
    5. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Wilten Nicola & Claudia Clopath, 2017. "Supervised learning in spiking neural networks with FORCE training," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malte J. Rasch & Charles Mackin & Manuel Gallo & An Chen & Andrea Fasoli & Frédéric Odermatt & Ning Li & S. R. Nandakumar & Pritish Narayanan & Hsinyu Tsai & Geoffrey W. Burr & Abu Sebastian & Vijay N, 2023. "Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Thomas Ortner & Horst Petschenig & Athanasios Vasilopoulos & Roland Renner & Špela Brglez & Thomas Limbacher & Enrique Piñero & Alejandro Linares-Barranco & Angeliki Pantazi & Robert Legenstein, 2025. "Rapid learning with phase-change memory-based in-memory computing through learning-to-learn," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Ruihua Yu & Ze Wang & Qi Liu & Bin Gao & Zhenqi Hao & Tao Guo & Sanchuan Ding & Junyang Zhang & Qi Qin & Dong Wu & Peng Yao & Qingtian Zhang & Jianshi Tang & He Qian & Huaqiang Wu, 2025. "A full-stack memristor-based computation-in-memory system with software-hardware co-development," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    6. Shi-Yuan Ma & Tianyu Wang & Jérémie Laydevant & Logan G. Wright & Peter L. McMahon, 2025. "Quantum-limited stochastic optical neural networks operating at a few quanta per activation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    9. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Xiangjin Wu & Asir Intisar Khan & Hengyuan Lee & Chen-Feng Hsu & Huairuo Zhang & Heshan Yu & Neel Roy & Albert V. Davydov & Ichiro Takeuchi & Xinyu Bao & H.-S. Philip Wong & Eric Pop, 2024. "Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Lei Tong & Yali Bi & Yilun Wang & Kai Peng & Xinyu Huang & Wei Ju & Zhuiri Peng & Zheng Li & Langlang Xu & Runfeng Lin & Xiangxiang Yu & Wenhao Shi & Hui Yu & Huajun Sun & Kanhao Xue & Qiang He & Ming, 2024. "Programmable nonlinear optical neuromorphic computing with bare 2D material MoS2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Zihao Chen & Zhili Xiao & Mahmoud Akl & Johannes Leugering & Omowuyi Olajide & Adil Malik & Nik Dennler & Chad Harper & Subhankar Bose & Hector A. Gonzalez & Mohamed Samaali & Gengting Liu & Jason Esh, 2025. "ON-OFF neuromorphic ISING machines using Fowler-Nordheim annealers," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Hengfei Yang & Shiyuan Yang & Debiao Meng & Chenghao Hu & Chaosheng Wu & Bo Yang & Peng Nie & Yuan Si & Xiaoyan Su, 2024. "Optimization of Analog Circuit Parameters Using Bidirectional Long Short-Term Memory Coupled with an Enhanced Whale Optimization Algorithm," Mathematics, MDPI, vol. 13(1), pages 1-24, December.
    17. Corey Lammie & Julian Büchel & Athanasios Vasilopoulos & Manuel Gallo & Abu Sebastian, 2025. "The inherent adversarial robustness of analog in-memory computing," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Shaochuan Chen & Zhen Yang & Heinrich Hartmann & Astrid Besmehn & Yuchao Yang & Ilia Valov, 2025. "Electrochemical ohmic memristors for continual learning," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Samarth Jain & Sifan Li & Haofei Zheng & Lingqi Li & Xuanyao Fong & Kah-Wee Ang, 2025. "Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    20. Federico Ricci & Massimiliano Avana & Francesco Mariani, 2025. "Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines," Energies, MDPI, vol. 18(2), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57352-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.