IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16108-9.html
   My bibliography  Save this article

Accurate deep neural network inference using computational phase-change memory

Author

Listed:
  • Vinay Joshi

    (IBM Research - Zurich
    King’s College London)

  • Manuel Le Gallo

    (IBM Research - Zurich)

  • Simon Haefeli

    (IBM Research - Zurich
    ETH Zurich)

  • Irem Boybat

    (IBM Research - Zurich
    Ecole Polytechnique Federale de Lausanne (EPFL))

  • S. R. Nandakumar

    (IBM Research - Zurich)

  • Christophe Piveteau

    (IBM Research - Zurich
    ETH Zurich)

  • Martino Dazzi

    (IBM Research - Zurich
    ETH Zurich)

  • Bipin Rajendran

    (King’s College London)

  • Abu Sebastian

    (IBM Research - Zurich)

  • Evangelos Eleftheriou

    (IBM Research - Zurich)

Abstract

In-memory computing using resistive memory devices is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. However, due to device variability and noise, the network needs to be trained in a specific way so that transferring the digitally trained weights to the analog resistive memory devices will not result in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type convolutional neural networks that results in no appreciable accuracy loss when transferring weights to phase-change memory (PCM) devices. We also propose a compensation technique that exploits the batch normalization parameters to improve the accuracy retention over time. We achieve a classification accuracy of 93.7% on CIFAR-10 and a top-1 accuracy of 71.6% on ImageNet benchmarks after mapping the trained weights to PCM. Our hardware results on CIFAR-10 with ResNet-32 demonstrate an accuracy above 93.5% retained over a one-day period, where each of the 361,722 synaptic weights is programmed on just two PCM devices organized in a differential configuration.

Suggested Citation

  • Vinay Joshi & Manuel Le Gallo & Simon Haefeli & Irem Boybat & S. R. Nandakumar & Christophe Piveteau & Martino Dazzi & Bipin Rajendran & Abu Sebastian & Evangelos Eleftheriou, 2020. "Accurate deep neural network inference using computational phase-change memory," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16108-9
    DOI: 10.1038/s41467-020-16108-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16108-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16108-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles Mackin & Malte J. Rasch & An Chen & Jonathan Timcheck & Robert L. Bruce & Ning Li & Pritish Narayanan & Stefano Ambrogio & Manuel Gallo & S. R. Nandakumar & Andrea Fasoli & Jose Luquin & Alexa, 2022. "Optimised weight programming for analogue memory-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Malte J. Rasch & Charles Mackin & Manuel Gallo & An Chen & Andrea Fasoli & Frédéric Odermatt & Ning Li & S. R. Nandakumar & Pritish Narayanan & Hsinyu Tsai & Geoffrey W. Burr & Abu Sebastian & Vijay N, 2023. "Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Ik-Jyae Kim & Min-Kyu Kim & Jang-Sik Lee, 2023. "Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16108-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.