IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54960-1.html
   My bibliography  Save this article

Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release

Author

Listed:
  • Dipayan Bose

    (Yale University
    Yale University)

  • Manindra Bera

    (Yale University
    Yale University)

  • Christopher A. Norman

    (UCL Queen Square Institute of Neurology
    University of Warwick)

  • Yulia Timofeeva

    (University of Warwick)

  • Kirill E. Volynski

    (Yale University
    UCL Queen Square Institute of Neurology)

  • Shyam S. Krishnakumar

    (Yale University
    Yale University
    UCL Queen Square Institute of Neurology)

Abstract

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon calcium activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of calcium-triggered fusion clamp reversal, govern the overall kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal calcium concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the calcium-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.

Suggested Citation

  • Dipayan Bose & Manindra Bera & Christopher A. Norman & Yulia Timofeeva & Kirill E. Volynski & Shyam S. Krishnakumar, 2024. "Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54960-1
    DOI: 10.1038/s41467-024-54960-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54960-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54960-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Skyler L. Jackman & Josef Turecek & Justine E. Belinsky & Wade G. Regehr, 2016. "The calcium sensor synaptotagmin 7 is required for synaptic facilitation," Nature, Nature, vol. 529(7584), pages 88-91, January.
    2. Kirill Grushin & Jing Wang & Jeff Coleman & James E. Rothman & Charles V. Sindelar & Shyam S. Krishnakumar, 2019. "Structural basis for the clamping and Ca2+ activation of SNARE-mediated fusion by synaptotagmin," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Qiangjun Zhou & Ying Lai & Taulant Bacaj & Minglei Zhao & Artem Y. Lyubimov & Monarin Uervirojnangkoorn & Oliver B. Zeldin & Aaron S. Brewster & Nicholas K. Sauter & Aina E. Cohen & S. Michael Soltis , 2015. "Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis," Nature, Nature, vol. 525(7567), pages 62-67, September.
    4. L. F. Abbott & Wade G. Regehr, 2004. "Synaptic computation," Nature, Nature, vol. 431(7010), pages 796-803, October.
    5. Qiangjun Zhou & Peng Zhou & Austin L. Wang & Dick Wu & Minglei Zhao & Thomas C. Südhof & Axel T. Brunger, 2017. "The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis," Nature, Nature, vol. 548(7668), pages 420-425, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Milano & Alessandro Cultrera & Luca Boarino & Luca Callegaro & Carlo Ricciardi, 2023. "Tomography of memory engrams in self-organizing nanowire connectomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Zhou, Xinjia & Tian, Changhai & Zhang, Xiyun & Zheng, Muhua & Xu, Kesheng, 2022. "Short-term plasticity as a mechanism to regulate and retain multistability," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Giacomo Valle & Natalija Katic Secerovic & Dominic Eggemann & Oleg Gorskii & Natalia Pavlova & Francesco M. Petrini & Paul Cvancara & Thomas Stieglitz & Pavel Musienko & Marko Bumbasirevic & Stanisa R, 2024. "Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Zhou, Xinjia & Zhang, Yan & Gu, Tianyi & Zheng, Muhua & Xu, Kesheng, 2024. "Mixed synaptic modulation and inhibitory plasticity perform complementary roles in metastable transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Philipe R. F. Mendonça & Erica Tagliatti & Helen Langley & Dimitrios Kotzadimitriou & Criseida G. Zamora-Chimal & Yulia Timofeeva & Kirill E. Volynski, 2022. "Asynchronous glutamate release is enhanced in low release efficacy synapses and dispersed across the active zone," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Protachevicz, Paulo R. & Batista, Antonio M. & Caldas, Iberê L. & Baptista, Murilo S., 2024. "Analytical solutions for the short-term plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. A. Barri & M. T. Wiechert & M. Jazayeri & D. A. DiGregorio, 2022. "Synaptic basis of a sub-second representation of time in a neural circuit model," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Kevin C. Courtney & Taraknath Mandal & Nikunj Mehta & Lanxi Wu & Yueqi Li & Debasis Das & Qiang Cui & Edwin R. Chapman, 2023. "Synaptotagmin-7 outperforms synaptotagmin-1 to promote the formation of large, stable fusion pores via robust membrane penetration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Xiuhua Yin & Hong Zhou & Mengling Zhang & Juan Su & Xiao Wang & Sijie Li & Zaixing Yang & Zhenhui Kang & Ruhong Zhou, 2023. "C3N nanodots inhibits Aβ peptides aggregation pathogenic path in Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Marieke Meijer & Miriam Öttl & Jie Yang & Aygul Subkhangulova & Avinash Kumar & Zicheng Feng & Torben W. Voorst & Alexander J. Groffen & Jan R. T. Weering & Yongli Zhang & Matthijs Verhage, 2024. "Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Cal F Rabang & Edward L Bartlett, 2011. "A Computational Model of Cellular Mechanisms of Temporal Coding in the Medial Geniculate Body (MGB)," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-13, December.
    13. He-Shan Zhang & Xue-Mei Dong & Zi-Cheng Zhang & Ze-Pu Zhang & Chao-Yi Ban & Zhe Zhou & Cheng Song & Shi-Qi Yan & Qian Xin & Ju-Qing Liu & Yin-Xiang Li & Wei Huang, 2022. "Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Hang Zhou & Guo-Qiang Bi & Guosong Liu, 2024. "Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54960-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.