IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46828-1.html
   My bibliography  Save this article

Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes

Author

Listed:
  • Marieke Meijer

    (Amsterdam University Medical Center)

  • Miriam Öttl

    (Vrije Universiteit Amsterdam)

  • Jie Yang

    (Yale School of Medicine)

  • Aygul Subkhangulova

    (Vrije Universiteit Amsterdam)

  • Avinash Kumar

    (Yale School of Medicine)

  • Zicheng Feng

    (Yale School of Medicine)

  • Torben W. Voorst

    (Vrije Universiteit Amsterdam)

  • Alexander J. Groffen

    (Amsterdam University Medical Center)

  • Jan R. T. Weering

    (Amsterdam University Medical Center)

  • Yongli Zhang

    (Yale School of Medicine
    Yale University)

  • Matthijs Verhage

    (Amsterdam University Medical Center
    Vrije Universiteit Amsterdam)

Abstract

Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn’s SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn’s inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.

Suggested Citation

  • Marieke Meijer & Miriam Öttl & Jie Yang & Aygul Subkhangulova & Avinash Kumar & Zicheng Feng & Torben W. Voorst & Alexander J. Groffen & Jan R. T. Weering & Yongli Zhang & Matthijs Verhage, 2024. "Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46828-1
    DOI: 10.1038/s41467-024-46828-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46828-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46828-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Javier Emperador-Melero & Man Yan Wong & Shan Shan H. Wang & Giovanni de Nola & Hajnalka Nyitrai & Tom Kirchhausen & Pascal S. Kaeser, 2021. "PKC-phosphorylation of Liprin-α3 triggers phase separation and controls presynaptic active zone structure," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    2. Xuelin Lou & Volker Scheuss & Ralf Schneggenburger, 2005. "Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion," Nature, Nature, vol. 435(7041), pages 497-501, May.
    3. Shen Wang & Yun Li & Jihong Gong & Sheng Ye & Xiaofei Yang & Rongguang Zhang & Cong Ma, 2019. "Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Kira M. S. Misura & Richard H. Scheller & William I. Weis, 2000. "Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex," Nature, Nature, vol. 404(6776), pages 355-362, March.
    5. L. F. Abbott & Wade G. Regehr, 2004. "Synaptic computation," Nature, Nature, vol. 431(7010), pages 796-803, October.
    6. Douglas A. Hattendorf & Anna Andreeva & Akanksha Gangar & Patrick J. Brennwald & William I. Weis, 2007. "Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism," Nature, Nature, vol. 446(7135), pages 567-571, March.
    7. Silvia De Rubeis & Xin He & Arthur P. Goldberg & Christopher S. Poultney & Kaitlin Samocha & A. Ercument Cicek & Yan Kou & Li Liu & Menachem Fromer & Susan Walker & Tarjinder Singh & Lambertus Klei & , 2014. "Synaptic, transcriptional and chromatin genes disrupted in autism," Nature, Nature, vol. 515(7526), pages 209-215, November.
    8. Reinhard Jahn & Dirk Fasshauer, 2012. "Molecular machines governing exocytosis of synaptic vesicles," Nature, Nature, vol. 490(7419), pages 201-207, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipe R. F. Mendonça & Erica Tagliatti & Helen Langley & Dimitrios Kotzadimitriou & Criseida G. Zamora-Chimal & Yulia Timofeeva & Kirill E. Volynski, 2022. "Asynchronous glutamate release is enhanced in low release efficacy synapses and dispersed across the active zone," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Takeo Kubota & Kazuki Mochizuki, 2016. "Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders," IJERPH, MDPI, vol. 13(5), pages 1-12, May.
    3. Nikunj Mehta & Sayantan Mondal & Emma T. Watson & Qiang Cui & Edwin R. Chapman, 2024. "The juxtamembrane linker of synaptotagmin 1 regulates Ca2+ binding via liquid-liquid phase separation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Gianluca Milano & Alessandro Cultrera & Luca Boarino & Luca Callegaro & Carlo Ricciardi, 2023. "Tomography of memory engrams in self-organizing nanowire connectomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Christina Kyrousi & Adam C. O’Neill & Agnieska Brazovskaja & Zhisong He & Pavel Kielkowski & Laure Coquand & Rossella Giaimo & Pierpaolo D’ Andrea & Alexander Belka & Andrea Forero Echeverry & Davide , 2021. "Extracellular LGALS3BP regulates neural progenitor position and relates to human cortical complexity," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    6. Zhou, Xinjia & Tian, Changhai & Zhang, Xiyun & Zheng, Muhua & Xu, Kesheng, 2022. "Short-term plasticity as a mechanism to regulate and retain multistability," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Luye Qin & Jamal B. Williams & Tao Tan & Tiaotiao Liu & Qing Cao & Kaijie Ma & Zhen Yan, 2021. "Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Giacomo Valle & Natalija Katic Secerovic & Dominic Eggemann & Oleg Gorskii & Natalia Pavlova & Francesco M. Petrini & Paul Cvancara & Thomas Stieglitz & Pavel Musienko & Marko Bumbasirevic & Stanisa R, 2024. "Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Stefano Berto & Alex H. Treacher & Emre Caglayan & Danni Luo & Jillian R. Haney & Michael J. Gandal & Daniel H. Geschwind & Albert A. Montillo & Genevieve Konopka, 2022. "Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Carolina Gracia-Diaz & Yijing Zhou & Qian Yang & Reza Maroofian & Paula Espana-Bonilla & Chul-Hwan Lee & Shuo Zhang & Natàlia Padilla & Raquel Fueyo & Elisa A. Waxman & Sunyimeng Lei & Garrett Otrimsk, 2023. "Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Ken-ichi Dewa & Nariko Arimura & Wataru Kakegawa & Masayuki Itoh & Toma Adachi & Satoshi Miyashita & Yukiko U. Inoue & Kento Hizawa & Kei Hori & Natsumi Honjoya & Haruya Yagishita & Shinichiro Taya & , 2024. "Neuronal DSCAM regulates the peri-synaptic localization of GLAST in Bergmann glia for functional synapse formation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Daungruthai Jarukanont & Imelda Bonifas Arredondo & Ricardo Femat & Martin E Garcia, 2015. "Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-25, December.
    13. José Wojnacki & Agustin Leonardo Lujan & Nathalie Brouwers & Carla Aranda-Vallejo & Gonzalo Bigliani & Maria Pena Rodriguez & Ombretta Foresti & Vivek Malhotra, 2023. "Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Alessandra Dall’Agnese & Jesse M. Platt & Ming M. Zheng & Max Friesen & Giuseppe Dall’Agnese & Alyssa M. Blaise & Jessica B. Spinelli & Jonathan E. Henninger & Erin N. Tevonian & Nancy M. Hannett & Ch, 2022. "The dynamic clustering of insulin receptor underlies its signaling and is disrupted in insulin resistance," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    16. Daehun Park & Yumei Wu & Xinbo Wang & Swetha Gowrishankar & Aaron Baublis & Pietro De Camilli, 2023. "Synaptic vesicle proteins and ATG9A self-organize in distinct vesicle phases within synapsin condensates," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Marco Colizzi & Riccardo Bortoletto & Rosalia Costa & Sagnik Bhattacharyya & Matteo Balestrieri, 2022. "The Autism–Psychosis Continuum Conundrum: Exploring the Role of the Endocannabinoid System," IJERPH, MDPI, vol. 19(9), pages 1-22, May.
    18. Romain Volmer & Céline Monnet & Daniel Gonzalez-Dunia, 2006. "Borna Disease Virus Blocks Potentiation of Presynaptic Activity through Inhibition of Protein Kinase C Signaling," PLOS Pathogens, Public Library of Science, vol. 2(3), pages 1-9, March.
    19. Xinhong Chen & Damien A. Wolfe & Dhanesh Sivadasan Bindu & Mengying Zhang & Naz Taskin & David Goertsen & Timothy F. Shay & Erin E. Sullivan & Sheng-Fu Huang & Sripriya Ravindra Kumar & Cynthia M. Aro, 2023. "Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Pu-Yun Shih & Yu-Lun Fang & Sahana Shankar & Sue-Ping Lee & Hsiao-Tang Hu & Hsin Chen & Ting-Fang Wang & Kuo-Chiang Hsia & Yi-Ping Hsueh, 2022. "Phase separation and zinc-induced transition modulate synaptic distribution and association of autism-linked CTTNBP2 and SHANK3," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46828-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.