IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39645-5.html
   My bibliography  Save this article

Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders

Author

Listed:
  • Carolina Gracia-Diaz

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Yijing Zhou

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Qian Yang

    (University of Pennsylvania)

  • Reza Maroofian

    (University College London)

  • Paula Espana-Bonilla

    (Consejo Superior de Investigaciones Científicas (CSIC))

  • Chul-Hwan Lee

    (Seoul National University, College of Medicine)

  • Shuo Zhang

    (University of Pennsylvania)

  • Natàlia Padilla

    (Universitat Autonoma de Barcelona)

  • Raquel Fueyo

    (Consejo Superior de Investigaciones Científicas (CSIC))

  • Elisa A. Waxman

    (The Children’s Hospital of Philadelphia)

  • Sunyimeng Lei

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Garrett Otrimski

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Dong Li

    (The Children’s Hospital of Philadelphia)

  • Sarah E. Sheppard

    (The Children’s Hospital of Philadelphia)

  • Paul Mark

    (Helen DeVos Children’s Hospital, Corewell Health)

  • Margaret H. Harr

    (The Children’s Hospital of Philadelphia)

  • Hakon Hakonarson

    (The Children’s Hospital of Philadelphia)

  • Lance Rodan

    (Boston Children’s Hospital
    Boston Children’s Hospital)

  • Adam Jackson

    (Medicine and Health, University of Manchester
    St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester)

  • Pradeep Vasudevan

    (University Hospitals of Leicester NHS Trust)

  • Corrina Powel

    (University Hospitals of Leicester NHS Trust)

  • Shehla Mohammed

    (Guy’s Hospital)

  • Sateesh Maddirevula

    (Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center)

  • Hamad Alzaidan

    (King Faisal Specialist Hospital and Research Center)

  • Eissa A. Faqeih

    (Children’s Specialist Hospital)

  • Stephanie Efthymiou

    (University College London)

  • Valentina Turchetti

    (University College London)

  • Fatima Rahman

    (University of Child Health Sciences & The Children’s Hospital)

  • Shazia Maqbool

    (University of Child Health Sciences & The Children’s Hospital)

  • Vincenzo Salpietro

    (University College London)

  • Shahnaz H. Ibrahim

    (Department of Pediatrics and Child Health, Aga Khan University Hospital)

  • Gabriella Rosa

    (University of Messina)

  • Henry Houlden

    (University College London)

  • Maha Nasser Alharbi

    (Qassim Health Cluster)

  • Nouriya Abbas Al-Sannaa

    (John Hopkins Aramco Health Care, Pediatric Services)

  • Peter Bauer

    (Centogene GmbH)

  • Giovanni Zifarelli

    (Centogene GmbH)

  • Conchi Estaras

    (Temple University)

  • Anna C. E. Hurst

    (University of Alabama at Birmingham)

  • Michelle L. Thompson

    (HudsonAlpha Institute for Biotechnology)

  • Anna Chassevent

    (Neurology and Developmental Medicine Kennedy Krieger Institute)

  • Constance L. Smith-Hicks

    (Neurology and Developmental Medicine Kennedy Krieger Institute
    Johns Hopkins University School of Medicine)

  • Xavier Cruz

    (Universitat Autonoma de Barcelona
    Institució Catalana de Recerca i Estudis Avançats (ICREA))

  • Alexander M. Holtz

    (Boston Children’s Hospital)

  • Houda Zghal Elloumi

    (GeneDx)

  • M J Hajianpour

    (Albany Medical College)

  • Claudine Rieubland

    (Inselspital, Bern University Hospital, University of Bern)

  • Dominique Braun

    (Inselspital, Bern University Hospital, University of Bern)

  • Siddharth Banka

    (Medicine and Health, University of Manchester
    St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester)

  • Deborah L. French

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Elizabeth A. Heller

    (University of Pennsylvania)

  • Murielle Saade

    (Consejo Superior de Investigaciones Científicas (CSIC))

  • Hongjun Song

    (University of Pennsylvania)

  • Guo-li Ming

    (University of Pennsylvania)

  • Fowzan S. Alkuraya

    (Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center
    College of Medicine, Alfaisal University)

  • Pankaj B. Agrawal

    (Boston Children’s Hospital
    Boston Children’s Hospital
    Boston Children’s Hospital
    University of Miami School of Medicine and Holtz Children’s Hospital, Jackson Heath System)

  • Danny Reinberg

    (HHMI/NYU Langone School of Medicine)

  • Elizabeth J. Bhoj

    (The Children’s Hospital of Philadelphia
    The Children’s Hospital of Philadelphia)

  • Marian A. Martínez-Balbás

    (Consejo Superior de Investigaciones Científicas (CSIC))

  • Naiara Akizu

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania)

Abstract

Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.

Suggested Citation

  • Carolina Gracia-Diaz & Yijing Zhou & Qian Yang & Reza Maroofian & Paula Espana-Bonilla & Chul-Hwan Lee & Shuo Zhang & Natàlia Padilla & Raquel Fueyo & Elisa A. Waxman & Sunyimeng Lei & Garrett Otrimsk, 2023. "Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39645-5
    DOI: 10.1038/s41467-023-39645-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39645-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39645-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael T. McCabe & Heidi M. Ott & Gopinath Ganji & Susan Korenchuk & Christine Thompson & Glenn S. Van Aller & Yan Liu & Alan P. Graves & Anthony Della Pietra III & Elsie Diaz & Louis V. LaFrance & M, 2012. "EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations," Nature, Nature, vol. 492(7427), pages 108-112, December.
    2. Thanathom Chailangkarn & Cleber A. Trujillo & Beatriz C. Freitas & Branka Hrvoj-Mihic & Roberto H. Herai & Diana X. Yu & Timothy T. Brown & Maria C. Marchetto & Cedric Bardy & Lauren McHenry & Lisa St, 2016. "A human neurodevelopmental model for Williams syndrome," Nature, Nature, vol. 536(7616), pages 338-343, August.
    3. Konrad J. Karczewski & Laurent C. Francioli & Grace Tiao & Beryl B. Cummings & Jessica Alföldi & Qingbo Wang & Ryan L. Collins & Kristen M. Laricchia & Andrea Ganna & Daniel P. Birnbaum & Laura D. Gau, 2020. "The mutational constraint spectrum quantified from variation in 141,456 humans," Nature, Nature, vol. 581(7809), pages 434-443, May.
    4. Silvia De Rubeis & Xin He & Arthur P. Goldberg & Christopher S. Poultney & Kaitlin Samocha & A. Ercument Cicek & Yan Kou & Li Liu & Menachem Fromer & Susan Walker & Tarjinder Singh & Lambertus Klei & , 2014. "Synaptic, transcriptional and chromatin genes disrupted in autism," Nature, Nature, vol. 515(7526), pages 209-215, November.
    5. Neil Justin & Ying Zhang & Cataldo Tarricone & Stephen R. Martin & Shuyang Chen & Elizabeth Underwood & Valeria De Marco & Lesley F. Haire & Philip A. Walker & Danny Reinberg & Jon R. Wilson & Steven , 2016. "Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    6. Linda T. Vo & Melissa A. Kinney & Xin Liu & Yuannyu Zhang & Jessica Barragan & Patricia M. Sousa & Deepak K. Jha & Areum Han & Marcella Cesana & Zhen Shao & Trista E. North & Stuart H. Orkin & Sergei , 2018. "Regulation of embryonic haematopoietic multipotency by EZH1," Nature, Nature, vol. 553(7689), pages 506-510, January.
    7. Bruna Paulsen & Silvia Velasco & Amanda J. Kedaigle & Martina Pigoni & Giorgia Quadrato & Anthony J. Deo & Xian Adiconis & Ana Uzquiano & Rafaela Sartore & Sung Min Yang & Sean K. Simmons & Panagiotis, 2022. "Autism genes converge on asynchronous development of shared neuron classes," Nature, Nature, vol. 602(7896), pages 268-273, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Hao Neo & Yiran Meng & Alba Rodriguez-Meira & Muhammad Z. H. Fadlullah & Christopher A. G. Booth & Emanuele Azzoni & Supat Thongjuea & Marella F. T. R. Bruijn & Sten Eirik W. Jacobsen & Adam J. Me, 2021. "Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Sheng Wang & Belinda Wang & Vanessa Drury & Sam Drake & Nawei Sun & Hasan Alkhairo & Juan Arbelaez & Clif Duhn & Vanessa H. Bal & Kate Langley & Joanna Martin & Pieter J. Hoekstra & Andrea Dietrich & , 2023. "Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Alexendar R. Perez & Laura Sala & Richard K. Perez & Joana A. Vidigal, 2021. "CSC software corrects off-target mediated gRNA depletion in CRISPR-Cas9 essentiality screens," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Michel S. Naslavsky & Marilia O. Scliar & Guilherme L. Yamamoto & Jaqueline Yu Ting Wang & Stepanka Zverinova & Tatiana Karp & Kelly Nunes & José Ricardo Magliocco Ceroni & Diego Lima Carvalho & Carlo, 2022. "Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Nicole Deflaux & Margaret Sunitha Selvaraj & Henry Robert Condon & Kelsey Mayo & Sara Haidermota & Melissa A. Basford & Chris Lunt & Anthony A. Philippakis & Dan M. Roden & Joshua C. Denny & Anjene Mu, 2023. "Demonstrating paths for unlocking the value of cloud genomics through cross cohort analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Andrea Wilderman & Eva D’haene & Machteld Baetens & Tara N. Yankee & Emma Wentworth Winchester & Nicole Glidden & Ellen Roets & Jo Dorpe & Sandra Janssens & Danny E. Miller & Miranda Galey & Kari M. B, 2024. "A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Mary-Ellen Lynall & Blagoje Soskic & James Hayhurst & Jeremy Schwartzentruber & Daniel F. Levey & Gita A. Pathak & Renato Polimanti & Joel Gelernter & Murray B. Stein & Gosia Trynka & Menna R. Clatwor, 2022. "Genetic variants associated with psychiatric disorders are enriched at epigenetically active sites in lymphoid cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Adrienne Tin & Pascal Schlosser & Pamela R. Matias-Garcia & Chris H. L. Thio & Roby Joehanes & Hongbo Liu & Zhi Yu & Antoine Weihs & Anselm Hoppmann & Franziska Grundner-Culemann & Josine L. Min & Vic, 2021. "Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    11. Sara Weirich & Albert Jeltsch, 2023. "Limited choice of natural amino acids as mimetics restricts design of protein lysine methylation studies," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    12. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Magdalena Zimoń & Yunfeng Huang & Anthi Trasta & Aliaksandr Halavatyi & Jimmy Z. Liu & Chia-Yen Chen & Peter Blattmann & Bernd Klaus & Christopher D. Whelan & David Sexton & Sally John & Wolfgang Hube, 2021. "Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    14. Yangci Liu & Haoming Zhai & Helen Alemayehu & Jérôme Boulanger & Lee J. Hopkins & Alicia C. Borgeaud & Christina Heroven & Jonathan D. Howe & Kendra E. Leigh & Clare E. Bryant & Yorgo Modis, 2023. "Cryo-electron tomography of NLRP3-activated ASC complexes reveals organelle co-localization," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Takeo Kubota & Kazuki Mochizuki, 2016. "Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders," IJERPH, MDPI, vol. 13(5), pages 1-12, May.
    16. Ping Chun Wu & Yan Quan Lee & Mattias Möller & Jill R. Storry & Martin L. Olsson, 2023. "Elucidation of the low-expressing erythroid CR1 phenotype by bioinformatic mining of the GATA1-driven blood-group regulome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Jörn Bethune & April Kleppe & Søren Besenbacher, 2022. "A method to build extended sequence context models of point mutations and indels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Laia Simó-Riudalbas & Sandra Offner & Evarist Planet & Julien Duc & Laurence Abrami & Sagane Dind & Alexandre Coudray & Mairene Coto-Llerena & Caner Ercan & Salvatore Piscuoglio & Claus Lindbjerg Ande, 2022. "Transposon-activated POU5F1B promotes colorectal cancer growth and metastasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Ulrik Kristoffer Stoltze & Jon Foss-Skiftesvik & Thomas van Overeem Hansen & Simon Rasmussen & Konrad J. Karczewski & Karin A. W. Wadt & Kjeld Schmiegelow, 2024. "The evolutionary impact of childhood cancer on the human gene pool," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Xiao Chen & Yinglu Li & Fang Zhu & Xinjing Xu & Brian Estrella & Manuel A. Pazos & John T. McGuire & Dimitris Karagiannis & Varun Sahu & Mustafo Mustafokulov & Claudio Scuoppo & Francisco J. Sánchez-R, 2023. "Context-defined cancer co-dependency mapping identifies a functional interplay between PRC2 and MLL-MEN1 complex in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39645-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.