IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53800-6.html
   My bibliography  Save this article

A tripartite synergistic optimization strategy for zinc-iodine batteries

Author

Listed:
  • Weibin Yan

    (Sichuan University)

  • Ying Liu

    (Sichuan University
    Ministry of Education)

  • Jiazhen Qiu

    (Sichuan University)

  • Feipeng Tan

    (Sichuan University)

  • Jiahui Liang

    (Sichuan University)

  • Xinze Cai

    (Sichuan University)

  • Chunlong Dai

    (Sichuan University
    Ministry of Education)

  • Jiangqi Zhao

    (Sichuan University
    Ministry of Education)

  • Zifeng Lin

    (Sichuan University
    Ministry of Education)

Abstract

The energy industry has taken notice of zinc-iodine (Zn-I2) batteries for their high safety, low cost, and attractive energy density. However, the shuttling of I3− by-products at cathode electrode and dendrite issues at Zn metal anode result in short cycle lifespan. Here, a tripartite synergistic optimization strategy is proposed, involving a MXene cathode host, a n-butanol electrolyte additive, and the in-situ solid electrolyte interface (SEI) protection. The MXene possesses catalytic ability to enhance the reaction kinetics and reduce I3− by-products. Meanwhile, the partially dissolved n-butanol additive can work synergistically with MXene to inhibit the shuttling of I3−. Besides, the n-butanol and I− in the electrolyte can synergistically improve the solvation structure of Zn2+. Moreover, an organic-inorganic hybrid SEI is in situ generated on the surface of the Zn anode, which induces stable non-dendritic zinc deposition. As a result, the fabricated batteries exhibit a high capacity of 0.30 mAh cm−2 and a superior energy density of 0.34 mWh cm−2 at a high specific current of 5 A g−1 across 30,000 cycles, with a minimal capacity decay of 0.0004% per cycle. This work offers a promising strategy for the subsequent research to comprehensively improve battery performance.

Suggested Citation

  • Weibin Yan & Ying Liu & Jiazhen Qiu & Feipeng Tan & Jiahui Liang & Xinze Cai & Chunlong Dai & Jiangqi Zhao & Zifeng Lin, 2024. "A tripartite synergistic optimization strategy for zinc-iodine batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53800-6
    DOI: 10.1038/s41467-024-53800-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53800-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53800-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yanyan Wang & Zhijie Wang & Wei Kong Pang & Wilford Lie & Jodie A. Yuwono & Gemeng Liang & Sailin Liu & Anita M. D’ Angelo & Jiaojiao Deng & Yameng Fan & Kenneth Davey & Baohua Li & Zaiping Guo, 2023. "Solvent control of water O−H bonds for highly reversible zinc ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Song Chen & Deluo Ji & Qianwu Chen & Jizhen Ma & Shaoqi Hou & Jintao Zhang, 2023. "Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Dejian Dong & Tairan Wang & Yue Sun & Jun Fan & Yi-Chun Lu, 2023. "Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes," Nature Sustainability, Nature, vol. 6(11), pages 1474-1484, November.
    5. Zishuai Zhang & Yilong Zhu & Miao Yu & Yan Jiao & Yan Huang, 2022. "Development of long lifespan high-energy aqueous organic||iodine rechargeable batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Hong & Kangkang Jia & Yueyu Zhang & Ziyuan Li & Junlin Jia & Jing Chen & Qimin Liang & Huarui Sun & Qiang Gao & Dong Zhou & Ruhong Li & Xiaoli Dong & Xiulin Fan & Sisi He, 2024. "Energetic and durable all-polymer aqueous battery for sustainable, flexible power," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Baojiu Hao & Jinqiu Zhou & Hao Yang & Changhao Zhu & Zhenkang Wang & Jie Liu & Chenglin Yan & Tao Qian, 2024. "Concentration polarization induced phase rigidification in ultralow salt colloid chemistry to stabilize cryogenic Zn batteries," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Jinrong Luo & Liang Xu & Yinan Yang & Song Huang & Yijing Zhou & Yanyan Shao & Tianheng Wang & Jiaming Tian & Shaohua Guo & Jianqing Zhao & Xiaoxu Zhao & Tao Cheng & Yuanlong Shao & Jin Zhang, 2024. "Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Guanjie Li & Zihan Zhao & Shilin Zhang & Liang Sun & Mingnan Li & Jodie A. Yuwono & Jianfeng Mao & Junnan Hao & Jitraporn (Pimm) Vongsvivut & Lidan Xing & Chun-Xia Zhao & Zaiping Guo, 2023. "A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Wenjiao Ma & Tingting Liu & Chen Xu & Chengjun Lei & Pengjie Jiang & Xin He & Xiao Liang, 2023. "A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Zhiyang Zheng & Xiongwei Zhong & Qi Zhang & Mengtian Zhang & Lixin Dai & Xiao Xiao & Jiahe Xu & Miaolun Jiao & Boran Wang & Hong Li & Yeyang Jia & Rui Mao & Guangmin Zhou, 2024. "An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53800-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.