IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i11d10.1038_s41893-023-01172-y.html
   My bibliography  Save this article

Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes

Author

Listed:
  • Dejian Dong

    (The Chinese University of Hong Kong)

  • Tairan Wang

    (City University of Hong Kong)

  • Yue Sun

    (The Chinese University of Hong Kong)

  • Jun Fan

    (City University of Hong Kong)

  • Yi-Chun Lu

    (The Chinese University of Hong Kong)

Abstract

Among the more sustainable battery chemistries, the aqueous zinc system is receiving renewed interest. To accelerate the practical applications of this promising technology, an effective strategy is to deploy high salt concentration electrolytes that could address the critical technical barriers, notably hydrogen evolution reaction and dendrite growth at the anode side. However, the state-of-the-art recipes are either zinc-ion deficient or halogen salt dependent, both of which unfortunately create extra challenges. Here we show a highly concentrated aqueous electrolyte formula utilizing zinc acetate, an otherwise poorly water-soluble but cheap and eco-friendly salt. The unprecedented solubility (up to 23 m) is a result of the introduction of hydrotropic agents that transform the acetate anion ligands to a hydrophilic coordination structure. All three hydrotropic agents including potassium acetate, urea and acetamide are effective in constructing highly concentrated zinc acetate electrolytes with which the assembled Zn//pyrene-4,5,9,10-tetraone full cell retains 70% of its initial capacity after 4,000 cycles. This work provides a unique opportunity to design high-performance electrolytes for applications in the wide battery space.

Suggested Citation

  • Dejian Dong & Tairan Wang & Yue Sun & Jun Fan & Yi-Chun Lu, 2023. "Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes," Nature Sustainability, Nature, vol. 6(11), pages 1474-1484, November.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:11:d:10.1038_s41893-023-01172-y
    DOI: 10.1038/s41893-023-01172-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-023-01172-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-023-01172-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:11:d:10.1038_s41893-023-01172-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.