IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52984-1.html
   My bibliography  Save this article

Pre-ciliated tubal epithelial cells are prone to initiation of high-grade serous ovarian carcinoma

Author

Listed:
  • Andrea Flesken-Nikitin

    (Cornell University)

  • Coulter Q. Ralston

    (Cornell University
    Cornell University)

  • Dah-Jiun Fu

    (Cornell University)

  • Andrea J. Micheli

    (University Children’s Hospital Zürich)

  • Daryl J. Phuong

    (Cornell University
    Cornell University)

  • Blaine A. Harlan

    (Cornell University)

  • Christopher S. Ashe

    (Cornell University)

  • Amanda P. Armstrong

    (Cornell University)

  • David W. McKellar

    (Cornell University)

  • Sangeeta Ghuwalewala

    (Cornell University)

  • Lora H. Ellenson

    (Memorial Sloan Kettering Cancer Center)

  • John C. Schimenti

    (Cornell University
    Cornell University)

  • Benjamin D. Cosgrove

    (Cornell University)

  • Alexander Yu. Nikitin

    (Cornell University)

Abstract

The distal region of the uterine (Fallopian) tube is commonly associated with high-grade serous carcinoma (HGSC), the predominant and most aggressive form of ovarian or extra-uterine cancer. Specific cell states and lineage dynamics of the adult tubal epithelium (TE) remain insufficiently understood, hindering efforts to determine the cell of origin for HGSC. Here, we report a comprehensive census of cell types and states of the mouse uterine tube. We show that distal TE cells expressing the stem/progenitor cell marker Slc1a3 can differentiate into both secretory (Ovgp1+) and ciliated (Fam183b+) cells. Inactivation of Trp53 and Rb1, whose pathways are commonly altered in HGSC, leads to elimination of targeted Slc1a3+ cells by apoptosis, thereby preventing their malignant transformation. In contrast, pre-ciliated cells (Krt5+, Prom1+, Trp73+) remain cancer-prone and give rise to serous tubal intraepithelial carcinomas and overt HGSC. These findings identify transitional pre-ciliated cells as a cancer-prone cell state and point to pre-ciliation mechanisms as diagnostic and therapeutic targets.

Suggested Citation

  • Andrea Flesken-Nikitin & Coulter Q. Ralston & Dah-Jiun Fu & Andrea J. Micheli & Daryl J. Phuong & Blaine A. Harlan & Christopher S. Ashe & Amanda P. Armstrong & David W. McKellar & Sangeeta Ghuwalewal, 2024. "Pre-ciliated tubal epithelial cells are prone to initiation of high-grade serous ovarian carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52984-1
    DOI: 10.1038/s41467-024-52984-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52984-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52984-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rui Song & Peter Walentek & Nicole Sponer & Alexander Klimke & Joon Sub Lee & Gary Dixon & Richard Harland & Ying Wan & Polina Lishko & Muriel Lize & Michael Kessel & Lin He, 2014. "miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110," Nature, Nature, vol. 510(7503), pages 115-120, June.
    2. Shuang Zhang & Igor Dolgalev & Tao Zhang & Hao Ran & Douglas A. Levine & Benjamin G. Neel, 2019. "Both fallopian tube and ovarian surface epithelium are cells-of-origin for high-grade serous ovarian carcinoma," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    3. Junyue Cao & Malte Spielmann & Xiaojie Qiu & Xingfan Huang & Daniel M. Ibrahim & Andrew J. Hill & Fan Zhang & Stefan Mundlos & Lena Christiansen & Frank J. Steemers & Cole Trapnell & Jay Shendure, 2019. "The single-cell transcriptional landscape of mammalian organogenesis," Nature, Nature, vol. 566(7745), pages 496-502, February.
    4. Andrea Flesken-Nikitin & Chang-Il Hwang & Chieh-Yang Cheng & Tatyana V. Michurina & Grigori Enikolopov & Alexander Yu. Nikitin, 2013. "Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche," Nature, Nature, vol. 495(7440), pages 241-245, March.
    5. Dah-Jiun Fu & Lianghai Wang & Fouad K. Chouairi & Ian M. Rose & Danysh A. Abetov & Andrew D. Miller & Robert J. Yamulla & John C. Schimenti & Andrea Flesken-Nikitin & Alexander Yu. Nikitin, 2020. "Gastric squamous-columnar junction contains a large pool of cancer-prone immature osteopontin responsive Lgr5−CD44+ cells," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Ci Fu & Xiang Zhang & Amanda O. Veri & Kali R. Iyer & Emma Lash & Alice Xue & Huijuan Yan & Nicole M. Revie & Cassandra Wong & Zhen-Yuan Lin & Elizabeth J. Polvi & Sean D. Liston & Benjamin VanderSlui, 2021. "Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Sandra Curras-Alonso & Juliette Soulier & Thomas Defard & Christian Weber & Sophie Heinrich & Hugo Laporte & Sophie Leboucher & Sonia Lameiras & Marie Dutreix & Vincent Favaudon & Florian Massip & Tho, 2023. "An interactive murine single-cell atlas of the lung responses to radiation injury," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Seung-Hyun Jung & Byung-Hee Hwang & Sun Shin & Eun-Hye Park & Sin-Hee Park & Chan Woo Kim & Eunmin Kim & Eunho Choo & Ik Jun Choi & Filip K. Swirski & Kiyuk Chang & Yeun-Jun Chung, 2022. "Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2hi macrophages in infarcted hearts," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Hailun Zhu & Sihai Dave Zhao & Alokananda Ray & Yu Zhang & Xin Li, 2022. "A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Luke Simpson & Andrew Strange & Doris Klisch & Sophie Kraunsoe & Takuya Azami & Daniel Goszczynski & Triet Minh & Benjamin Planells & Nadine Holmes & Fei Sang & Sonal Henson & Matthew Loose & Jennifer, 2024. "A single-cell atlas of pig gastrulation as a resource for comparative embryology," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Umji Lee & Yadong Zhang & Yonglin Zhu & Allen Chilun Luo & Liyan Gong & Daniel M. Tremmel & Yunhye Kim & Victoria Sofia Villarreal & Xi Wang & Ruei-Zeng Lin & Miao Cui & Minglin Ma & Ke Yuan & Kai Wan, 2024. "Robust differentiation of human pluripotent stem cells into mural progenitor cells via transient activation of NKX3.1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Yuma Takano & Jun Suzuki & Kotaro Nomura & Gento Fujii & Junko Zenkoh & Hitomi Kawai & Yuta Kuze & Yukie Kashima & Satoi Nagasawa & Yuka Nakamura & Motohiro Kojima & Katsuya Tsuchihara & Masahide Seki, 2024. "Spatially resolved gene expression profiling of tumor microenvironment reveals key steps of lung adenocarcinoma development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Qian-Yue Zhang & Xiao-Ping Ye & Zheng Zhou & Chen-Fang Zhu & Rui Li & Ya Fang & Rui-Jia Zhang & Lu Li & Wei Liu & Zheng Wang & Shi-Yang Song & Sang-Yu Lu & Shuang-Xia Zhao & Jian-Nan Lin & Huai-Dong S, 2022. "Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Hyeon-Jin Kim & Greg Booth & Lauren Saunders & Sanjay Srivatsan & José L. McFaline-Figueroa & Cole Trapnell, 2022. "Nuclear oligo hashing improves differential analysis of single-cell RNA-seq," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Greg Holmes & Ana S. Gonzalez-Reiche & Madrikha Saturne & Susan M. Motch Perrine & Xianxiao Zhou & Ana C. Borges & Bhavana Shewale & Joan T. Richtsmeier & Bin Zhang & Harm Bakel & Ethylin Wang Jabs, 2021. "Single-cell analysis identifies a key role for Hhip in murine coronal suture development," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    12. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Caroline Hoffmann & Floriane Noel & Maximilien Grandclaudon & Lucile Massenet-Regad & Paula Michea & Philemon Sirven & Lilith Faucheux & Aurore Surun & Olivier Lantz & Mylene Bohec & Jian Ye & Weihua , 2022. "PD-L1 and ICOSL discriminate human Secretory and Helper dendritic cells in cancer, allergy and autoimmunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    14. Katrin Rabold & Martijn Zoodsma & Inge Grondman & Yunus Kuijpers & Manita Bremmers & Martin Jaeger & Bowen Zhang & Willemijn Hobo & Han J. Bonenkamp & Johannes H. W. Wilt & Marcel J. R. Janssen & Lenn, 2022. "Reprogramming of myeloid cells and their progenitors in patients with non-medullary thyroid carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Gaofei Li & Yicong Sun & Immanuel Kwok & Liting Yang & Wanying Wen & Peixian Huang & Mei Wu & Jing Li & Zhibin Huang & Zhaoyuan Liu & Shuai He & Wan Peng & Jin-Xin Bei & Florent Ginhoux & Lai Guan Ng , 2024. "Cebp1 and Cebpβ transcriptional axis controls eosinophilopoiesis in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Hongchun Lin & Hui Peng & Yuxiang Sun & Meijun Si & Jiao Wu & Yanlin Wang & Sandhya S. Thomas & Zheng Sun & Zhaoyong Hu, 2023. "Reprogramming of cis-regulatory networks during skeletal muscle atrophy in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Wenpin Hou & Zhicheng Ji & Zeyu Chen & E. John Wherry & Stephanie C. Hicks & Hongkai Ji, 2023. "A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    18. Won Kyung Kim & Alyssa J. Buckley & Dong-Hoon Lee & Alex Hiroto & Christian H. Nenninger & Adam W. Olson & Jinhui Wang & Zhuo Li & Rajeev Vikram & Yao Mawulikplimi Adzavon & Tak-yu Yau & Yigang Bao & , 2024. "Androgen deprivation induces double-null prostate cancer via aberrant nuclear export and ribosomal biogenesis through HGF and Wnt activation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Zachary A. Hing & Janek S. Walker & Ethan C. Whipp & Lindsey Brinton & Matthew Cannon & Pu Zhang & Steven Sher & Casey B. Cempre & Fiona Brown & Porsha L. Smith & Claudio Agostinelli & Stefano A. Pile, 2023. "Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter’s transformation," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    20. Nicholas J. Silva & Leah C. Dorman & Ilia D. Vainchtein & Nadine C. Horneck & Anna V. Molofsky, 2021. "In situ and transcriptomic identification of microglia in synapse-rich regions of the developing zebrafish brain," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52984-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.