IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50583-8.html
   My bibliography  Save this article

The influence of HLA genetic variation on plasma protein expression

Author

Listed:
  • Chirag Krishna

    (Pfizer Research and Development, Pfizer Inc.)

  • Joshua Chiou

    (Pfizer Research and Development, Pfizer Inc.)

  • Saori Sakaue

    (Harvard Medical School
    Harvard Medical School
    Broad Institute of MIT and Harvard
    Harvard Medical School)

  • Joyce B. Kang

    (Harvard Medical School
    Harvard Medical School
    Broad Institute of MIT and Harvard
    Harvard Medical School)

  • Stephen M. Christensen

    (Pfizer Research and Development, Pfizer Inc.)

  • Isac Lee

    (Pfizer Research and Development, Pfizer Inc.)

  • Melis Atalar Aksit

    (Pfizer Research and Development, Pfizer Inc.)

  • Hye In Kim

    (Pfizer Research and Development, Pfizer Inc.)

  • David Schack

    (Pfizer Research and Development, Pfizer Inc.)

  • Soumya Raychaudhuri

    (Harvard Medical School
    Harvard Medical School
    Broad Institute of MIT and Harvard
    Harvard Medical School)

  • Daniel Ziemek

    (Pfizer Research and Development, Pfizer Inc.)

  • Xinli Hu

    (Pfizer Research and Development, Pfizer Inc.)

Abstract

Genetic variation in the human leukocyte antigen (HLA) loci is associated with risk of immune-mediated diseases, but the molecular effects of HLA polymorphism are unclear. Here we examined the effects of HLA genetic variation on the expression of 2940 plasma proteins across 45,330 Europeans in the UK Biobank, with replication analyses across multiple ancestry groups. We detected 504 proteins affected by HLA variants (HLA-pQTL), including widespread trans effects by autoimmune disease risk alleles. More than 80% of the HLA-pQTL fine-mapped to amino acid positions in the peptide binding groove. HLA-I and II affected proteins expressed in similar cell types but in different pathways of both adaptive and innate immunity. Finally, we investigated potential HLA-pQTL effects on disease by integrating HLA-pQTL with fine-mapped HLA-disease signals in the UK Biobank. Our data reveal the diverse effects of HLA genetic variation and aid the interpretation of associations between HLA alleles and immune-mediated diseases.

Suggested Citation

  • Chirag Krishna & Joshua Chiou & Saori Sakaue & Joyce B. Kang & Stephen M. Christensen & Isac Lee & Melis Atalar Aksit & Hye In Kim & David Schack & Soumya Raychaudhuri & Daniel Ziemek & Xinli Hu, 2024. "The influence of HLA genetic variation on plasma protein expression," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50583-8
    DOI: 10.1038/s41467-024-50583-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50583-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50583-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grimur Hjorleifsson Eldjarn & Egil Ferkingstad & Sigrun H. Lund & Hannes Helgason & Olafur Th. Magnusson & Kristbjorg Gunnarsdottir & Thorunn A. Olafsdottir & Bjarni V. Halldorsson & Pall I. Olason & , 2023. "Large-scale plasma proteomics comparisons through genetics and disease associations," Nature, Nature, vol. 622(7982), pages 348-358, October.
    2. Chao Tian & Bethann S. Hromatka & Amy K. Kiefer & Nicholas Eriksson & Suzanne M. Noble & Joyce Y. Tung & David A. Hinds, 2017. "Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    3. Kyle J. Travaglini & Ahmad N. Nabhan & Lolita Penland & Rahul Sinha & Astrid Gillich & Rene V. Sit & Stephen Chang & Stephanie D. Conley & Yasuo Mori & Jun Seita & Gerald J. Berry & Joseph B. Shrager , 2020. "A molecular cell atlas of the human lung from single-cell RNA sequencing," Nature, Nature, vol. 587(7835), pages 619-625, November.
    4. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    5. Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.
    6. Benjamin B. Sun & Joshua Chiou & Matthew Traylor & Christian Benner & Yi-Hsiang Hsu & Tom G. Richardson & Praveen Surendran & Anubha Mahajan & Chloe Robins & Steven G. Vasquez-Grinnell & Liping Hou & , 2023. "Plasma proteomic associations with genetics and health in the UK Biobank," Nature, Nature, vol. 622(7982), pages 329-338, October.
    7. Flora Castellino & Alex Y. Huang & Grégoire Altan-Bonnet & Sabine Stoll & Clemens Scheinecker & Ronald N. Germain, 2006. "Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction," Nature, Nature, vol. 440(7086), pages 890-895, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Douglas P. Loesch & Manik Garg & Dorota Matelska & Dimitrios Vitsios & Xiao Jiang & Scott C. Ritchie & Benjamin B. Sun & Heiko Runz & Christopher D. Whelan & Rury R. Holman & Robert J. Mentz & Filipe , 2025. "Identification of plasma proteomic markers underlying polygenic risk of type 2 diabetes and related comorbidities," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Shuai Yuan & Jie Chen & Xixin Ruan & Yuying Li & Sarah A. Abramowitz & Lijuan Wang & Fangyuan Jiang & Ying Xiong & Michael G. Levin & Benjamin F. Voight & Dipender Gill & Stephen Burgess & Agneta Åkes, 2025. "Cross-population GWAS and proteomics improve risk prediction and reveal mechanisms in atrial fibrillation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Zhenhua Zhang & Wenchao Li & Qiuyao Zhan & Michelle Aillaud & Javier Botey-Bataller & Martijn Zoodsma & Rob Horst & Leo A. B. Joosten & Christoph Bock & Leon N. Schulte & Cheng-Jian Xu & Mihai G. Nete, 2025. "Unveiling genetic signatures of immune response in immune-related diseases through single-cell eQTL analysis across diverse conditions," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Sylvia Hartmann & Summaira Yasmeen & Benjamin M. Jacobs & Spiros Denaxas & Munir Pirmohamed & Eric R. Gamazon & Mark J. Caulfield & Harry Hemingway & Maik Pietzner & Claudia Langenberg, 2023. "ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Baihan Wang & Alfred Pozarickij & Mohsen Mazidi & Neil Wright & Pang Yao & Saredo Said & Andri Iona & Christiana Kartsonaki & Hannah Fry & Kuang Lin & Yiping Chen & Huaidong Du & Daniel Avery & Dan Sc, 2025. "Comparative studies of 2168 plasma proteins measured by two affinity-based platforms in 4000 Chinese adults," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    7. Amelia K. Haj & David S. Paul & Sean J. Jurgens & Harish Eswaran & Lu-Chen Weng & Justine Ryu & Alfonso Rodriguez Espada & Sharjeel Chaudhry & Louis M. Feingold & Kristen Burke & Satoshi Koyama & Xin , 2025. "Coagulation factor XII haploinsufficiency is protective against venous thromboembolism in a population-scale multidimensional analysis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    8. Jie Shen & Wander Valentim & Eleni Friligkou & Cassie Overstreet & Karmel W. Choi & Dora Koller & Christopher J. O’Donnell & Murray B. Stein & Joel Gelernter & Haitao Lv & Ling Sun & Guido J. Falcone , 2025. "Shared genetic architecture of posttraumatic stress disorder with cardiovascular imaging, risk, and diagnoses," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Isabelle Austin-Zimmerman & Daniel F. Levey & Olga Giannakopoulou & Joseph D. Deak & Marco Galimberti & Keyrun Adhikari & Hang Zhou & Spiros Denaxas & Haritz Irizar & Karoline Kuchenbaecker & Andrew M, 2023. "Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Mine Koprulu & Eleanor Wheeler & Nicola D. Kerrison & Spiros Denaxas & Julia Carrasco-Zanini & Chloe M. Orkin & Harry Hemingway & Nicholas J. Wareham & Maik Pietzner & Claudia Langenberg, 2025. "Sex differences in the genetic regulation of the human plasma proteome," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Chengran Yang & Priyanka Gorijala & Jigyasha Timsina & Lihua Wang & Menghan Liu & Ciyang Wang & William Brock & Yueyao Wang & Fumihiko Urano & Yun Ju Sung & Carlos Cruchaga, 2025. "European and African ancestry-specific plasma protein-QTL and metabolite-QTL analyses identify ancestry-specific T2D effector proteins and metabolites," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    13. Mary P. LaPierre & Katherine Lawler & Svenja Godbersen & I. Sadaf Farooqi & Markus Stoffel, 2022. "MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Yon Ho Jee & Ying Wang & Keum Ji Jung & Ji-Young Lee & Heejin Kimm & Rui Duan & Alkes L. Price & Alicia R. Martin & Peter Kraft, 2025. "Genome-wide association studies in a large Korean cohort identify quantitative trait loci for 36 traits and illuminate their genetic architectures," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Yuji Yamamoto & Yuya Shirai & Kyuto Sonehara & Shinichi Namba & Takafumi Ojima & Kenichi Yamamoto & Ryuya Edahiro & Ken Suzuki & Akinori Kanai & Yoshiya Oda & Yutaka Suzuki & Takayuki Morisaki & Akira, 2025. "Dissecting cross-population polygenic heterogeneity across respiratory and cardiometabolic diseases," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    16. Yifan Kong & Wangxia Tang & Haonan Kang & Yunlong Guan & Si Li & Xi Cao & Zhonghe Shao & Yi Jiang & Chaolong Wang & Xingjie Hao, 2025. "Linear and non-linear proteome-wide association studies provide novel insight into venous thromboembolism," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    17. Joel T. Rämö & Tuomo Kiiskinen & Richard Seist & Kristi Krebs & Masahiro Kanai & Juha Karjalainen & Mitja Kurki & Eija Hämäläinen & Paavo Häppölä & Aki S. Havulinna & Heidi Hautakangas & Reedik Mägi &, 2023. "Genome-wide screen of otosclerosis in population biobanks: 27 loci and shared associations with skeletal structure," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Abolfazl Doostparast Torshizi & Dongnhu T. Truong & Liping Hou & Bart Smets & Christopher D. Whelan & Shuwei Li, 2024. "Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Yihe Yang & Noah Lorincz-Comi & Xiaofeng Zhu, 2025. "Uncovering causal gene-tissue pairs and variants through a multivariate TWAS controlling for infinitesimal effects," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    20. Yijun Li & Zhaozhong Zhu & Carlos A. Camargo & Janice A. Espinola & Kohei Hasegawa & Liming Liang, 2025. "Epigenomic and proteomic analyses provide insights into early-life immune regulation and asthma development in infants," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50583-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.