IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49056-9.html
   My bibliography  Save this article

Terahertz photon to dc current conversion via magnetic excitations of multiferroics

Author

Listed:
  • Makiko Ogino

    (University of Tokyo)

  • Yoshihiro Okamura

    (University of Tokyo)

  • Kosuke Fujiwara

    (University of Tokyo)

  • Takahiro Morimoto

    (University of Tokyo)

  • Naoto Nagaosa

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Yoshio Kaneko

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Yoshinori Tokura

    (University of Tokyo
    RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo)

  • Youtarou Takahashi

    (University of Tokyo
    RIKEN Center for Emergent Matter Science (CEMS))

Abstract

Direct conversion from terahertz photon to charge current is a key phenomenon for terahertz photonics. Quantum geometrical description of optical processes in crystalline solids predicts existence of field-unbiased dc photocurrent arising from terahertz-light generation of magnetic excitations in multiferroics, potentially leading to fast and energy-efficient terahertz devices. Here, we demonstrate the dc charge current generation from terahertz magnetic excitations in multiferroic perovskite manganites with spin-driven ferroelectricity, while keeping an insulating state with no free carrier. It is also revealed that electromagnon, which ranges sub-terahertz to 2 THz, as well as antiferromagnetic resonance shows the giant conversion efficiency. Polar asymmetry induced by the cycloidal spin order gives rise to this terahertz-photon-induced dc photocurrent, and no external magnetic and electric bias field are required for this conversion process. The observed phenomena are beyond the conventional photovoltaics in semi-classical regime and demonstrate the essential role of quantum geometrical aspect in low-energy optical processes. Our finding establishes a paradigm of terahertz photovoltaic phenomena, paving a way for terahertz photonic devices and energy harvesting.

Suggested Citation

  • Makiko Ogino & Yoshihiro Okamura & Kosuke Fujiwara & Takahiro Morimoto & Naoto Nagaosa & Yoshio Kaneko & Yoshinori Tokura & Youtarou Takahashi, 2024. "Terahertz photon to dc current conversion via magnetic excitations of multiferroics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49056-9
    DOI: 10.1038/s41467-024-49056-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49056-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49056-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Nakamura & S. Horiuchi & F. Kagawa & N. Ogawa & T. Kurumaji & Y. Tokura & M. Kawasaki, 2017. "Shift current photovoltaic effect in a ferroelectric charge-transfer complex," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    2. Y. Iguchi & Y. Nii & Y. Onose, 2017. "Magnetoelectrical control of nonreciprocal microwave response in a multiferroic helimagnet," Nature Communications, Nature, vol. 8(1), pages 1-5, August.
    3. Louis Ponet & S. Artyukhin & Th. Kain & J. Wettstein & Anna Pimenov & A. Shuvaev & X. Wang & S.-W. Cheong & Maxim Mostovoy & Andrei Pimenov, 2022. "Topologically protected magnetoelectric switching in a multiferroic," Nature, Nature, vol. 607(7917), pages 81-85, July.
    4. T. Kimura & T. Goto & H. Shintani & K. Ishizaka & T. Arima & Y. Tokura, 2003. "Magnetic control of ferroelectric polarization," Nature, Nature, vol. 426(6962), pages 55-58, November.
    5. S. Iguchi & R. Masuda & S. Seki & Y. Tokura & Y. Takahashi, 2021. "Enhanced gyrotropic birefringence and natural optical activity on electromagnon resonance in a helimagnet," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Yoshinori Tokura & Naoto Nagaosa, 2018. "Nonreciprocal responses from non-centrosymmetric quantum materials," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masao Nakamura & Yang-Hao Chan & Takahiro Yasunami & Yi-Shiuan Huang & Guang-Yu Guo & Yajian Hu & Naoki Ogawa & Yiling Chiew & Xiuzhen Yu & Takahiro Morimoto & Naoto Nagaosa & Yoshinori Tokura & Masas, 2024. "Strongly enhanced shift current at exciton resonances in a noncentrosymmetric wide-gap semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. S. Iguchi & R. Masuda & S. Seki & Y. Tokura & Y. Takahashi, 2021. "Enhanced gyrotropic birefringence and natural optical activity on electromagnon resonance in a helimagnet," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Yangliu Wu & Zhaozhuo Zeng & Haipeng Lu & Xiaocang Han & Chendi Yang & Nanshu Liu & Xiaoxu Zhao & Liang Qiao & Wei Ji & Renchao Che & Longjiang Deng & Peng Yan & Bo Peng, 2024. "Coexistence of ferroelectricity and antiferroelectricity in 2D van der Waals multiferroic," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Shingo Toyoda & Manfred Fiebig & Lea Forster & Taka-hisa Arima & Yoshinori Tokura & Naoki Ogawa, 2021. "Writing of strain-controlled multiferroic ribbons into MnWO4," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    5. Junhyeon Jo & Yuan Peisen & Haozhe Yang & Samuel Mañas-Valero & José J. Baldoví & Yao Lu & Eugenio Coronado & Fèlix Casanova & F. Sebastian Bergeret & Marco Gobbi & Luis E. Hueso, 2023. "Local control of superconductivity in a NbSe2/CrSBr van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Siqi Jiang & Renjun Du & Jiawei Jiang & Gan Liu & Jiabei Huang & Yu Du & Yaqing Han & Jingkuan Xiao & Di Zhang & Fuzhuo Lian & Wanting Xu & Siqin Wang & Lei Qiao & Kenji Watanabe & Takashi Taniguchi &, 2025. "The interplay of ferroelectricity and magneto-transport in non-magnetic moiré superlattices," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    7. Junlin Xiong & Jiao Xie & Bin Cheng & Yudi Dai & Xinyu Cui & Lizheng Wang & Zenglin Liu & Ji Zhou & Naizhou Wang & Xianghan Xu & Xianhui Chen & Sang-Wook Cheong & Shi-Jun Liang & Feng Miao, 2024. "Electrical switching of Ising-superconducting nonreciprocity for quantum neuronal transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Junhyeon Jo & Jung Hwa Kim & Choong H. Kim & Jaebyeong Lee & Daeseong Choe & Inseon Oh & Seunghyun Lee & Zonghoon Lee & Hosub Jin & Jung-Woo Yoo, 2022. "Defect-gradient-induced Rashba effect in van der Waals PtSe2 layers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Ziqian Wang & Meng Wang & Jannis Lehmann & Yuki Shiomi & Taka-hisa Arima & Naoto Nagaosa & Yoshinori Tokura & Naoki Ogawa, 2024. "Electric-field-enhanced second-harmonic domain contrast and nonreciprocity in a van der Waals antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Samuel H. Moody & Matthew T. Littlehales & Daniel A. Mayoh & Geetha Balakrishnan & Diego Alba Venero & Peter D. Hatton & Jonathan S. White, 2025. "Deterministic control of nanomagnetic spiral trajectories using an electric field," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Tingting Zhu & Jie Bie & Chengmin Ji & Xinyuan Zhang & Lina Li & Xitao Liu & Xiao-Ying Huang & Wei Fa & Shuang Chen & Junhua Luo, 2022. "Circular polarized light-dependent anomalous photovoltaic effect from achiral hybrid perovskites," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Hidetoshi Masuda & Takeshi Seki & Jun-ichiro Ohe & Yoichi Nii & Hiroto Masuda & Koki Takanashi & Yoshinori Onose, 2024. "Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Feixiang Zhang & Panshuo Wang & Yandi Zhu & Jinlei Shi & Rui Pang & Xiaoyan Ren & Shunfang Li, 2025. "Highly enhanced room-temperature single-atom catalysis of two-dimensional organic-inorganic multiferroics Cr(half-fluoropyrazine)2 for CO oxidation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Mathias Soulier & Shamashis Sengupta & Yurii G. Pashkevich & Roxana Capu & Ryan Thompson & Jarji Khmaladze & Miguel Monteverde & Louis Dumoulin & Dominik Munzar & Christian Bernhard & Subhrangsu Sarka, 2025. "Spontaneous voltage and persistent electric current from rectification of electronic noise in cuprate/manganite heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    15. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Anil-Kumar Singh & Kévin Martin & Maurizio Mastropasqua Talamo & Axel Houssin & Nicolas Vanthuyne & Narcis Avarvari & Oren Tal, 2025. "Single-molecule junctions map the interplay between electrons and chirality," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    17. Shun Akatsuka & Sebastian Esser & Shun Okumura & Ryota Yambe & Rinsuke Yamada & Moritz M. Hirschmann & Seno Aji & Jonathan S. White & Shang Gao & Yoshichika Onuki & Taka-hisa Arima & Taro Nakajima & M, 2024. "Non-coplanar helimagnetism in the layered van-der-Waals metal DyTe3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Xu Zhang & Tongshuai Zhu & Shuai Zhang & Zhongqiang Chen & Anke Song & Chong Zhang & Rongzheng Gao & Wei Niu & Yequan Chen & Fucong Fei & Yilin Tai & Guoan Li & Binghui Ge & Wenkai Lou & Jie Shen & Ha, 2024. "Light-induced giant enhancement of nonreciprocal transport at KTaO3-based interfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Yuchao Zhang & Shanzheng Du & Xiaochi Liu & Yahua Yuan & Yumei Jing & Tian Tian & Junhao Chu & Fei Xue & Kai Chang & Jian Sun, 2025. "Low-force pulse switching of ferroelectric polarization enabled by imprint field," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    20. Shuai Xu & Jiesu Wang & Pan Chen & Kuijuan Jin & Cheng Ma & Shiyao Wu & Erjia Guo & Chen Ge & Can Wang & Xiulai Xu & Hongbao Yao & Jingyi Wang & Donggang Xie & Xinyan Wang & Kai Chang & Xuedong Bai & , 2023. "Magnetoelectric coupling in multiferroics probed by optical second harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49056-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.