IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48925-7.html
   My bibliography  Save this article

Stabilization of V1 interneuron-motor neuron connectivity ameliorates motor phenotype in a mouse model of ALS

Author

Listed:
  • Santiago Mora

    (University of Copenhagen
    University of St Andrews)

  • Anna Stuckert

    (University of Copenhagen
    University of St Andrews)

  • Rasmus Huth Friis

    (University of Copenhagen)

  • Kimberly Pietersz

    (The Netherlands Institute for Neuroscience)

  • Gith Noes-Holt

    (University of Copenhagen)

  • Roser Montañana-Rosell

    (University of Copenhagen)

  • Haoyu Wang

    (University of St Andrews)

  • Andreas Toft Sørensen

    (University of Copenhagen)

  • Raghavendra Selvan

    (University of Copenhagen)

  • Joost Verhaagen

    (The Netherlands Institute for Neuroscience)

  • Ilary Allodi

    (University of Copenhagen
    University of St Andrews)

Abstract

Loss of connectivity between spinal V1 inhibitory interneurons and motor neurons is found early in disease in the SOD1G93A mice. Such changes in premotor inputs can contribute to homeostatic imbalance of motor neurons. Here, we show that the Extended Synaptotagmin 1 (Esyt1) presynaptic organizer is downregulated in V1 interneurons. V1 restricted overexpression of Esyt1 rescues inhibitory synapses, increases motor neuron survival, and ameliorates motor phenotypes. Two gene therapy approaches overexpressing ESYT1 were investigated; one for local intraspinal delivery, and the other for systemic administration using an AAV-PHP.eB vector delivered intravenously. Improvement of motor functions is observed in both approaches, however systemic administration appears to significantly reduce onset of motor impairment in the SOD1G93A mice in absence of side effects. Altogether, we show that stabilization of V1 synapses by ESYT1 overexpression has the potential to improve motor functions in ALS, demonstrating that interneurons can be a target to attenuate ALS symptoms.

Suggested Citation

  • Santiago Mora & Anna Stuckert & Rasmus Huth Friis & Kimberly Pietersz & Gith Noes-Holt & Roser Montañana-Rosell & Haoyu Wang & Andreas Toft Sørensen & Raghavendra Selvan & Joost Verhaagen & Ilary Allo, 2024. "Stabilization of V1 interneuron-motor neuron connectivity ameliorates motor phenotype in a mouse model of ALS," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48925-7
    DOI: 10.1038/s41467-024-48925-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48925-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48925-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jelena Scekic-Zahirovic & Inmaculada Sanjuan-Ruiz & Vanessa Kan & Salim Megat & Pierre Rossi & Stéphane Dieterlé & Raphaelle Cassel & Marguerite Jamet & Pascal Kessler & Diana Wiesner & Laura Tzeplaef, 2021. "Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    2. Simon Gosgnach & Guillermo M. Lanuza & Simon J. B. Butt & Harald Saueressig & Ying Zhang & Tomoko Velasquez & Dieter Riethmacher & Edward M. Callaway & Ole Kiehn & Martyn Goulding, 2006. "V1 spinal neurons regulate the speed of vertebrate locomotor outputs," Nature, Nature, vol. 440(7081), pages 215-219, March.
    3. Sonu Sahadevan & Katharina M. Hembach & Elena Tantardini & Manuela Pérez-Berlanga & Marian Hruska-Plochan & Salim Megat & Julien Weber & Petra Schwarz & Luc Dupuis & Mark D. Robinson & Pierre Rossi & , 2021. "Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Anna-Leigh Brown & Oscar G. Wilkins & Matthew J. Keuss & Sarah E. Kargbo-Hill & Matteo Zanovello & Weaverly Colleen Lee & Alexander Bampton & Flora C. Y. Lee & Laura Masino & Yue A. Qi & Sam Bryce-Smi, 2022. "TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A," Nature, Nature, vol. 603(7899), pages 131-137, March.
    5. X. Rosa Ma & Mercedes Prudencio & Yuka Koike & Sarat C. Vatsavayai & Garam Kim & Fred Harbinski & Adam Briner & Caitlin M. Rodriguez & Caiwei Guo & Tetsuya Akiyama & H. Broder Schmidt & Beryl B. Cummi, 2022. "TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A," Nature, Nature, vol. 603(7899), pages 124-130, March.
    6. Iris Augustin & Christian Rosenmund & Thomas C. Südhof & Nils Brose, 1999. "Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles," Nature, Nature, vol. 400(6743), pages 457-461, July.
    7. Seung Wook Oh & Julie A. Harris & Lydia Ng & Brent Winslow & Nicholas Cain & Stefan Mihalas & Quanxin Wang & Chris Lau & Leonard Kuan & Alex M. Henry & Marty T. Mortrud & Benjamin Ouellette & Thuc Ngh, 2014. "A mesoscale connectome of the mouse brain," Nature, Nature, vol. 508(7495), pages 207-214, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cyril Pottier & Fahri Küçükali & Matt Baker & Anthony Batzler & Gregory D. Jenkins & Marka Blitterswijk & Cristina T. Vicente & Wouter Coster & Sarah Wynants & Pieter Walle & Owen A. Ross & Melissa E., 2025. "Deciphering distinct genetic risk factors for FTLD-TDP pathological subtypes via whole-genome sequencing," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    2. Jarrett Eshima & Samantha A. O’Connor & Ethan Marschall & Robert Bowser & Christopher L. Plaisier & Barbara S. Smith, 2023. "Molecular subtypes of ALS are associated with differences in patient prognosis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Rebecca San Gil & Dana Pascovici & Juliana Venturato & Heledd Brown-Wright & Prachi Mehta & Lidia Madrid San Martin & Jemma Wu & Wei Luan & Yi Kit Chui & Adekunle T. Bademosi & Shilpa Swaminathan & Se, 2024. "A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    4. Brittany N. Flores & Seungyoon B. Yu & Isaac V. Cohen & Melania H. Fanok & Wei Luan & Romeo D. Maciuca & Linus D. Sun & Richard M. Tsai & Maurits Vissers & Lars Smits & Tommy M. Bunte & Anna Bakardjie, 2025. "Investigational eIF2B activator DNL343 modulates the integrated stress response in preclinical models of TDP-43 pathology and individuals with ALS in a randomized clinical trial," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    5. Manindra Bera & Kirill Grushin & R. Venkat Kalyana Sundaram & Jasmine S. Hinzen & Joyce Chen & Atrouli Chatterjee & Abhijith Radhakrishnan & Seong Lee & Murugesh Padmanarayana & Jeff Coleman & Frédéri, 2025. "Two successive oligomeric Munc13 assemblies scaffold vesicle docking and SNARE assembly to support neurotransmitter release," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    6. Salim Megat & Natalia Mora & Jason Sanogo & Olga Roman & Alberto Catanese & Najwa Ouali Alami & Axel Freischmidt & Xhuljana Mingaj & Hortense Calbiac & François Muratet & Sylvie Dirrig-Grosch & Stépha, 2023. "Integrative genetic analysis illuminates ALS heritability and identifies risk genes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Jeffrey D. Rothstein & Olivia Keeley & Caroline Warlick & Timothy M. Miller & Cindy V. Ly & Jonathan D. Glass & Alyssa N. Coyne, 2025. "Sporadic ALS induced pluripotent stem cell derived neurons reveal hallmarks of TDP-43 loss of function," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    8. Hannah E. Salapa & Patricia A. Thibault & Cole D. Libner & Yulian Ding & Joseph-Patrick W. E. Clarke & Connor Denomy & Catherine Hutchinson & Hashim M. Abidullah & S. Austin Hammond & Landon Pastushok, 2024. "hnRNP A1 dysfunction alters RNA splicing and drives neurodegeneration in multiple sclerosis (MS)," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Yufeng Liang & Sydney Willey & Yu-Chieh Chung & Yi-Meng Lo & Shiqin Miao & Sarah Rundell & Li-Chun Tu & Dennis Bong, 2023. "Intracellular RNA and DNA tracking by uridine-rich internal loop tagging with fluorogenic bPNA," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Christoph Schweingruber & Jik Nijssen & Jonas Mechtersheimer & Stefan Reber & Mélanie Lebœuf & Niamh L. O’Brien & Irene Mei & Erin Hedges & Michaela Keuper & Julio Aguila Benitez & Vlad Radoi & Martin, 2025. "Single-cell RNA-sequencing reveals early mitochondrial dysfunction unique to motor neurons shared across FUS- and TARDBP-ALS," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    11. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    13. Yufeng Liu & Shengdian Jiang & Yingxin Li & Sujun Zhao & Zhixi Yun & Zuo-Han Zhao & Lingli Zhang & Gaoyu Wang & Xin Chen & Linus Manubens-Gil & Yuning Hang & Qiaobo Gong & Yuanyuan Li & Penghao Qian &, 2024. "Neuronal diversity and stereotypy at multiple scales through whole brain morphometry," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    14. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Sydney C Weiser & Brian R Mullen & Desiderio Ascencio & James B Ackman, 2023. "Data-driven segmentation of cortical calcium dynamics," PLOS Computational Biology, Public Library of Science, vol. 19(5), pages 1-36, May.
    16. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Jun Liu & Arron F. Hall & Dong V. Wang, 2024. "Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Marcus N. Leiwe & Satoshi Fujimoto & Toshikazu Baba & Daichi Moriyasu & Biswanath Saha & Richi Sakaguchi & Shigenori Inagaki & Takeshi Imai, 2024. "Automated neuronal reconstruction with super-multicolour Tetbow labelling and threshold-based clustering of colour hues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48925-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.