IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46830-7.html
   My bibliography  Save this article

Demonstration of hypergraph-state quantum information processing

Author

Listed:
  • Jieshan Huang

    (School of Physics, Peking University)

  • Xudong Li

    (School of Physics, Peking University
    Harvard University)

  • Xiaojiong Chen

    (School of Physics, Peking University)

  • Chonghao Zhai

    (School of Physics, Peking University)

  • Yun Zheng

    (School of Physics, Peking University)

  • Yulin Chi

    (School of Physics, Peking University)

  • Yan Li

    (School of Physics, Peking University
    Peking University
    Shanxi University
    Peking University Yangtze Delta Institute of Optoelectronics)

  • Qiongyi He

    (School of Physics, Peking University
    Peking University
    Shanxi University
    Peking University Yangtze Delta Institute of Optoelectronics)

  • Qihuang Gong

    (School of Physics, Peking University
    Peking University
    Shanxi University
    Peking University Yangtze Delta Institute of Optoelectronics)

  • Jianwei Wang

    (School of Physics, Peking University
    Peking University
    Shanxi University
    Peking University Yangtze Delta Institute of Optoelectronics)

Abstract

Complex entangled states are the key resources for measurement-based quantum computations, which is realised by performing a sequence of measurements on initially entangled qubits. Executable quantum algorithms in the graph-state quantum computing model are determined by the entanglement structure and the connectivity of entangled qubits. By generalisation from graph-type entanglement in which only the nearest qubits interact to a new type of hypergraph entanglement in which any subset of qubits can be arbitrarily entangled via hyperedges, hypergraph states represent more general resource states that allow arbitrary quantum computation with Pauli universality. Here we report experimental preparation, certification and processing of complete categories of four-qubit hypergraph states under the principle of local unitary equivalence, on a fully reprogrammable silicon-photonic quantum chip. Genuine multipartite entanglement for hypergraph states is certificated by the characterisation of entanglement witness, and the observation of violations of Mermin inequalities without any closure of distance or detection loopholes. A basic measurement-based protocol and an efficient resource state verification by color-encoding stabilizers are implemented with local Pauli measurement to benchmark the building blocks for hypergraph-state quantum computation. Our work prototypes hypergraph entanglement as a general resource for quantum information processing.

Suggested Citation

  • Jieshan Huang & Xudong Li & Xiaojiong Chen & Chonghao Zhai & Yun Zheng & Yulin Chi & Yan Li & Qiongyi He & Qihuang Gong & Jianwei Wang, 2024. "Demonstration of hypergraph-state quantum information processing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46830-7
    DOI: 10.1038/s41467-024-46830-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46830-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46830-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jeremy C. Adcock & Caterina Vigliar & Raffaele Santagati & Joshua W. Silverstone & Mark G. Thompson, 2019. "Programmable four-photon graph states on a silicon chip," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    3. S. Paesani & M. Borghi & S. Signorini & A. Maïnos & L. Pavesi & A. Laing, 2020. "Near-ideal spontaneous photon sources in silicon quantum photonics," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    4. Sirui Cao & Bujiao Wu & Fusheng Chen & Ming Gong & Yulin Wu & Yangsen Ye & Chen Zha & Haoran Qian & Chong Ying & Shaojun Guo & Qingling Zhu & He-Liang Huang & Youwei Zhao & Shaowei Li & Shiyu Wang & J, 2023. "Generation of genuine entanglement up to 51 superconducting qubits," Nature, Nature, vol. 619(7971), pages 738-742, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jia-Qi Wang & Yuan-Hao Yang & Ming Li & Haiqi Zhou & Xin-Biao Xu & Ji-Zhe Zhang & Chun-Hua Dong & Guang-Can Guo & C.-L. Zou, 2022. "Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Pavel Hrmo & Benjamin Wilhelm & Lukas Gerster & Martin W. Mourik & Marcus Huber & Rainer Blatt & Philipp Schindler & Thomas Monz & Martin Ringbauer, 2023. "Native qudit entanglement in a trapped ion quantum processor," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Noah Goss & Alexis Morvan & Brian Marinelli & Bradley K. Mitchell & Long B. Nguyen & Ravi K. Naik & Larry Chen & Christian Jünger & John Mark Kreikebaum & David I. Santiago & Joel J. Wallman & Irfan S, 2022. "High-fidelity qutrit entangling gates for superconducting circuits," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    6. Irene Fernández de Fuentes & Tim Botzem & Mark A. I. Johnson & Arjen Vaartjes & Serwan Asaad & Vincent Mourik & Fay E. Hudson & Kohei M. Itoh & Brett C. Johnson & Alexander M. Jakob & Jeffrey C. McCal, 2024. "Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46830-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.