IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46020-5.html
   My bibliography  Save this article

The long and winding road of reprogramming-induced rejuvenation

Author

Listed:
  • Ali Doğa Yücel

    (Koc University
    Harvard Medical School)

  • Vadim N. Gladyshev

    (Harvard Medical School)

Abstract

Organismal aging is inherently connected to the aging of its constituent cells and systems. Reducing the biological age of the organism may be assisted by reducing the age of its cells - an approach exemplified by partial cell reprogramming through the expression of Yamanaka factors or exposure to chemical cocktails. It is crucial to protect cell type identity during partial reprogramming, as cells need to retain or rapidly regain their functions following the treatment. Another critical issue is the ability to quantify biological age as reprogrammed older cells acquire younger states. We discuss recent advances in reprogramming-induced rejuvenation and offer a critical review of this procedure and its relationship to the fundamental nature of aging. We further comparatively analyze partial reprogramming, full reprogramming and transdifferentiation approaches, assess safety concerns and emphasize the importance of distinguishing rejuvenation from dedifferentiation. Finally, we highlight translational opportunities that the reprogramming-induced rejuvenation approach offers.

Suggested Citation

  • Ali Doğa Yücel & Vadim N. Gladyshev, 2024. "The long and winding road of reprogramming-induced rejuvenation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46020-5
    DOI: 10.1038/s41467-024-46020-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46020-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46020-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Wang & Ruben Rabadan Ros & Paloma Martinez-Redondo & Zaijun Ma & Lei Shi & Yuan Xue & Isabel Guillen-Guillen & Ling Huang & Tomoaki Hishida & Hsin-Kai Liao & Estrella Nuñez Delicado & Concepcion , 2021. "In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Stuart D. Tyner & Sundaresan Venkatachalam & Jene Choi & Stephen Jones & Nader Ghebranious & Herbert Igelmann & Xiongbin Lu & Gabrielle Soron & Benjamin Cooper & Cory Brayton & Sang Hee Park & Timothy, 2002. "p53 mutant mice that display early ageing-associated phenotypes," Nature, Nature, vol. 415(6867), pages 45-53, January.
    3. Hyenjong Hong & Kazutoshi Takahashi & Tomoko Ichisaka & Takashi Aoi & Osami Kanagawa & Masato Nakagawa & Keisuke Okita & Shinya Yamanaka, 2009. "Suppression of induced pluripotent stem cell generation by the p53–p21 pathway," Nature, Nature, vol. 460(7259), pages 1132-1135, August.
    4. Chao Sheng & Johannes Jungverdorben & Hendrik Wiethoff & Qiong Lin & Lea J. Flitsch & Daniela Eckert & Matthias Hebisch & Julia Fischer & Jaideep Kesavan & Beatrice Weykopf & Linda Schneider & Dominik, 2018. "A stably self-renewing adult blood-derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    5. María Abad & Lluc Mosteiro & Cristina Pantoja & Marta Cañamero & Teresa Rayon & Inmaculada Ors & Osvaldo Graña & Diego Megías & Orlando Domínguez & Dolores Martínez & Miguel Manzanares & Sagrario Orte, 2013. "Reprogramming in vivo produces teratomas and iPS cells with totipotency features," Nature, Nature, vol. 502(7471), pages 340-345, October.
    6. Jingyang Guan & Guan Wang & Jinlin Wang & Zhengyuan Zhang & Yao Fu & Lin Cheng & Gaofan Meng & Yulin Lyu & Jialiang Zhu & Yanqin Li & Yanglu Wang & Shijia Liuyang & Bei Liu & Zirun Yang & Huanjing He , 2022. "Chemical reprogramming of human somatic cells to pluripotent stem cells," Nature, Nature, vol. 605(7909), pages 325-331, May.
    7. Yuancheng Lu & Benedikt Brommer & Xiao Tian & Anitha Krishnan & Margarita Meer & Chen Wang & Daniel L. Vera & Qiurui Zeng & Doudou Yu & Michael S. Bonkowski & Jae-Hyun Yang & Songlin Zhou & Emma M. Ho, 2020. "Reprogramming to recover youthful epigenetic information and restore vision," Nature, Nature, vol. 588(7836), pages 124-129, December.
    8. Tapash Jay Sarkar & Marco Quarta & Shravani Mukherjee & Alex Colville & Patrick Paine & Linda Doan & Christopher M. Tran & Constance R. Chu & Steve Horvath & Lei S. Qi & Nidhi Bhutani & Thomas A. Rand, 2020. "Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    9. Tamer T. Onder & Nergis Kara & Anne Cherry & Amit U. Sinha & Nan Zhu & Kathrin M. Bernt & Patrick Cahan & B. Ogan Mancarci & Juli Unternaehrer & Piyush B. Gupta & Eric S. Lander & Scott A. Armstrong &, 2012. "Chromatin-modifying enzymes as modulators of reprogramming," Nature, Nature, vol. 483(7391), pages 598-602, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel F. Kaemena & Masahito Yoshihara & Meryam Beniazza & James Ashmore & Suling Zhao & Mårten Bertenstam & Victor Olariu & Shintaro Katayama & Keisuke Okita & Simon R. Tomlinson & Kosuke Yusa & Keis, 2023. "B1 SINE-binding ZFP266 impedes mouse iPSC generation through suppression of chromatin opening mediated by reprogramming factors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Bo Wang & Chen Li & Jin Ming & Linlin Wu & Shicai Fang & Yi Huang & Lihui Lin & He Liu & Junqi Kuang & Chengchen Zhao & Xingnan Huang & Huijian Feng & Jing Guo & Xuejie Yang & Liman Guo & Xiaofei Zhan, 2023. "The NuRD complex cooperates with SALL4 to orchestrate reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Mu Li & Aaron Zhong & Youjun Wu & Mega Sidharta & Michael Beaury & Xiaolan Zhao & Lorenz Studer & Ting Zhou, 2022. "Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jamie L. Endicott & Paula A. Nolte & Hui Shen & Peter W. Laird, 2022. "Cell division drives DNA methylation loss in late-replicating domains in primary human cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Maria Arez & Melanie Eckersley-Maslin & Tajda Klobučar & João Gilsa Lopes & Felix Krueger & Annalisa Mupo & Ana Cláudia Raposo & David Oxley & Samantha Mancino & Anne-Valerie Gendrel & Bruno Bernardes, 2022. "Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Jean-Philippe Coppé & Christopher K Patil & Francis Rodier & Yu Sun & Denise P Muñoz & Joshua Goldstein & Peter S Nelson & Pierre-Yves Desprez & Judith Campisi, 2008. "Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-1, December.
    7. Noemie Vilallongue & Julia Schaeffer & Anne-Marie Hesse & Céline Delpech & Béatrice Blot & Antoine Paccard & Elise Plissonnier & Blandine Excoffier & Yohann Couté & Stephane Belin & Homaira Nawabi, 2022. "Guidance landscapes unveiled by quantitative proteomics to control reinnervation in adult visual system," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis," IJERPH, MDPI, vol. 19(24), pages 1-57, December.
    9. Albert Stuart Reece & Gary Kenneth Hulse, 2023. "Clinical Epigenomic Explanation of the Epidemiology of Cannabinoid Genotoxicity Manifesting as Transgenerational Teratogenesis, Cancerogenesis and Aging Acceleration," IJERPH, MDPI, vol. 20(4), pages 1-24, February.
    10. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "Epidemiology of Δ8THC-Related Carcinogenesis in USA: A Panel Regression and Causal Inferential Study," IJERPH, MDPI, vol. 19(13), pages 1-27, June.
    11. Allison P. Siegenfeld & Shelby A. Roseman & Heejin Roh & Nicholas Z. Lue & Corin C. Wagen & Eric Zhou & Sarah E. Johnstone & Martin J. Aryee & Brian B. Liau, 2022. "Polycomb-lamina antagonism partitions heterochromatin at the nuclear periphery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46020-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.