IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45888-7.html
   My bibliography  Save this article

General-purpose programmable photonic processor for advanced radiofrequency applications

Author

Listed:
  • Daniel Pérez-López

    (Universitat Politècnica de València
    iPronics, Programmable Photonics)

  • Ana Gutierrez

    (Universitat Politècnica de València
    iPronics, Programmable Photonics)

  • David Sánchez

    (iPronics, Programmable Photonics)

  • Aitor López-Hernández

    (Universitat Politècnica de València)

  • Mikel Gutierrez

    (iPronics, Programmable Photonics)

  • Erica Sánchez-Gomáriz

    (Universitat Politècnica de València
    iPronics, Programmable Photonics)

  • Juan Fernández

    (iPronics, Programmable Photonics)

  • Alejandro Cruz

    (iPronics, Programmable Photonics)

  • Alberto Quirós

    (iPronics, Programmable Photonics)

  • Zhenyun Xie

    (iPronics, Programmable Photonics)

  • Jesús Benitez

    (iPronics, Programmable Photonics)

  • Nandor Bekesi

    (iPronics, Programmable Photonics)

  • Alejandro Santomé

    (iPronics, Programmable Photonics)

  • Diego Pérez-Galacho

    (Universitat Politècnica de València)

  • Prometheus DasMahapatra

    (Universitat Politècnica de València)

  • Andrés Macho

    (Universitat Politècnica de València)

  • José Capmany

    (Universitat Politècnica de València
    iPronics, Programmable Photonics)

Abstract

A general-purpose photonic processor can be built integrating a silicon photonic programmable core in a technology stack comprising an electronic monitoring and controlling layer and a software layer for resource control and programming. This processor can leverage the unique properties of photonics in terms of ultra-high bandwidth, high-speed operation, and low power consumption while operating in a complementary and synergistic way with electronic processors. These features are key in applications such as next-generation 5/6 G wireless systems where reconfigurable filtering, frequency conversion, arbitrary waveform generation, and beamforming are currently provided by microwave photonic subsystems that cannot be scaled down. Here we report the first general-purpose programmable processor with the remarkable capability to implement all the required basic functionalities of a microwave photonic system by suitable programming of its resources. The processor is fabricated in silicon photonics and incorporates the full photonic/electronic and software stack.

Suggested Citation

  • Daniel Pérez-López & Ana Gutierrez & David Sánchez & Aitor López-Hernández & Mikel Gutierrez & Erica Sánchez-Gomáriz & Juan Fernández & Alejandro Cruz & Alberto Quirós & Zhenyun Xie & Jesús Benitez & , 2024. "General-purpose programmable photonic processor for advanced radiofrequency applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45888-7
    DOI: 10.1038/s41467-024-45888-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45888-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45888-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Janise McNair, 2022. "The 6G frequency switch that spares scientific services," Nature, Nature, vol. 606(7912), pages 34-35, June.
    2. Wim Bogaerts & Daniel Pérez & José Capmany & David A. B. Miller & Joyce Poon & Dirk Englund & Francesco Morichetti & Andrea Melloni, 2020. "Programmable photonic circuits," Nature, Nature, vol. 586(7828), pages 207-216, October.
    3. Xiaosheng Zhang & Kyungmok Kwon & Johannes Henriksson & Jianheng Luo & Ming C. Wu, 2022. "A large-scale microelectromechanical-systems-based silicon photonics LiDAR," Nature, Nature, vol. 603(7900), pages 253-258, March.
    4. Yilun Wang & Xiang Li & Zhibin Jiang & Lei Tong & Wentao Deng & Xiaoyan Gao & Xinyu Huang & Hailong Zhou & Yu Yu & Lei Ye & Xi Xiao & Xinliang Zhang, 2021. "Ultrahigh-speed graphene-based optical coherent receiver," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudip Shekhar & Wim Bogaerts & Lukas Chrostowski & John E. Bowers & Michael Hochberg & Richard Soref & Bhavin J. Shastri, 2024. "Roadmapping the next generation of silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yang Yang & Robert J. Chapman & Ben Haylock & Francesco Lenzini & Yogesh N. Joglekar & Mirko Lobino & Alberto Peruzzo, 2024. "Programmable high-dimensional Hamiltonian in a photonic waveguide array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Joo, Mingyu & Kim, Seung Hyun & Ghose, Anindya & Wilbur, Kenneth C., 2023. "Designing Distributed Ledger technologies, like Blockchain, for advertising markets," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 12-21.
    12. Takaya Ochiai & Tomohiro Akazawa & Yuto Miyatake & Kei Sumita & Shuhei Ohno & Stéphane Monfray & Frederic Boeuf & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2022. "Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Dominik D. Bühler & Matthias Weiß & Antonio Crespo-Poveda & Emeline D. S. Nysten & Jonathan J. Finley & Kai Müller & Paulo V. Santos & Mauricio M. Lima & Hubert J. Krenner, 2022. "On-chip generation and dynamic piezo-optomechanical rotation of single photons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Zhao, Jingyuan & Feng, Xuning & Wang, Junbin & Lian, Yubo & Ouyang, Minggao & Burke, Andrew F., 2023. "Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks," Applied Energy, Elsevier, vol. 352(C).
    15. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Chupao Lin & Juan Santo Domingo Peñaranda & Jolien Dendooven & Christophe Detavernier & David Schaubroeck & Nico Boon & Roel Baets & Nicolas Le Thomas, 2022. "UV photonic integrated circuits for far-field structured illumination autofluorescence microscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Saeed Sharif Azadeh & Jason C. C. Mak & Hong Chen & Xianshu Luo & Fu-Der Chen & Hongyao Chua & Frank Weiss & Christopher Alexiev & Andrei Stalmashonak & Youngho Jung & John N. Straguzzi & Guo-Qiang Lo, 2023. "Microcantilever-integrated photonic circuits for broadband laser beam scanning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Michele Cotrufo & Akshaj Arora & Sahitya Singh & Andrea Alù, 2023. "Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Sunkyu Yu & Namkyoo Park, 2023. "Heavy tails and pruning in programmable photonic circuits for universal unitaries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Qiang Lv & Xue-Dong Wang & Yue Yu & Ming-Peng Zhuo & Min Zheng & Liang-Sheng Liao, 2022. "Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45888-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.