IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45054-z.html
   My bibliography  Save this article

Thermo-optic epsilon-near-zero effects

Author

Listed:
  • Jiaye Wu

    (Photonic Systems Laboratory (PHOSL), STI-IEM)

  • Marco Clementi

    (Photonic Systems Laboratory (PHOSL), STI-IEM)

  • Chenxingyu Huang

    (Peking University
    Tsinghua University)

  • Feng Ye

    (Peking University)

  • Hongyan Fu

    (Tsinghua University)

  • Lei Lu

    (Peking University)

  • Shengdong Zhang

    (Peking University)

  • Qian Li

    (Peking University)

  • Camille-Sophie Brès

    (Photonic Systems Laboratory (PHOSL), STI-IEM)

Abstract

Nonlinear epsilon-near-zero (ENZ) nanodevices featuring vanishing permittivity and CMOS-compatibility are attractive solutions for large-scale-integrated systems-on-chips. Such confined systems with unavoidable heat generation impose critical challenges for semiconductor-based ENZ performances. While their optical properties are temperature-sensitive, there is no systematic analysis on such crucial dependence. Here, we experimentally report the linear and nonlinear thermo-optic ENZ effects in indium tin oxide. We characterize its temperature-dependent optical properties with ENZ frequencies covering the telecommunication O-band, C-band, and 2-μm-band. Depending on the ENZ frequency, it exhibits an unprecedented 70–93-THz-broadband 660–955% enhancement over the conventional thermo-optic effect. The ENZ-induced fast-varying large group velocity dispersion up to 0.03–0.18 fs2nm−1 and its temperature dependence are also observed for the first time. Remarkably, the thermo-optic nonlinearity demonstrates a 1113–2866% enhancement, on par with its reported ENZ-enhanced Kerr nonlinearity. Our work provides references for packaged ENZ-enabled photonic integrated circuit designs, as well as a new platform for nonlinear photonic applications and emulations.

Suggested Citation

  • Jiaye Wu & Marco Clementi & Chenxingyu Huang & Feng Ye & Hongyan Fu & Lei Lu & Shengdong Zhang & Qian Li & Camille-Sophie Brès, 2024. "Thermo-optic epsilon-near-zero effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45054-z
    DOI: 10.1038/s41467-024-45054-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45054-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45054-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yiyu Zhou & M. Zahirul Alam & Mohammad Karimi & Jeremy Upham & Orad Reshef & Cong Liu & Alan E. Willner & Robert W. Boyd, 2020. "Broadband frequency translation through time refraction in an epsilon-near-zero material," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    2. Hao Li & Ziheng Zhou & Wangyu Sun & Michaël Lobet & Nader Engheta & Iñigo Liberal & Yue Li, 2022. "Direct observation of ideal electromagnetic fluids," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mittelman, Gur & Eran, Ronen & Zhivin, Lev & Eisenhändler, Ohad & Luzon, Yossi & Tshuva, Moshe, 2023. "The potential of renewable electricity in isolated grids: The case of Israel in 2050," Applied Energy, Elsevier, vol. 349(C).
    2. Romain Tirole & Stefano Vezzoli & Dhruv Saxena & Shu Yang & T. V. Raziman & Emanuele Galiffi & Stefan A. Maier & John B. Pendry & Riccardo Sapienza, 2024. "Second harmonic generation at a time-varying interface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Thomas R. Jones & Alexander V. Kildishev & Mordechai Segev & Dimitrios Peroulis, 2024. "Time-reflection of microwaves by a fast optically-controlled time-boundary," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Wallace Jaffray & Federico Belli & Enrico G. Carnemolla & Catalina Dobas & Mark Mackenzie & John Travers & Ajoy K. Kar & Matteo Clerici & Clayton DeVault & Vladimir M. Shalaev & Alexandra Boltasseva &, 2022. "Near-zero-index ultra-fast pulse characterization," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Wendi Yan & Ziheng Zhou & Hao Li & Yue Li, 2023. "Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Emanuele Galiffi & Paloma A. Huidobro & J. B. Pendry, 2022. "An Archimedes' screw for light," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Longqing Cong & Jiaguang Han & Weili Zhang & Ranjan Singh, 2021. "Temporal loss boundary engineered photonic cavity," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. J. Enrique Vázquez-Lozano & Iñigo Liberal, 2023. "Incandescent temporal metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45054-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.