IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42457-2.html
   My bibliography  Save this article

Real higher-order Weyl photonic crystal

Author

Listed:
  • Yuang Pan

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Chaoxi Cui

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Qiaolu Chen

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Fujia Chen

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Li Zhang

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Yudong Ren

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Ning Han

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Wenhao Li

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Xinrui Li

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Zhi-Ming Yu

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Hongsheng Chen

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Yihao Yang

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Zhejiang University
    Zhejiang University)

Abstract

Higher-order Weyl semimetals are a family of recently predicted topological phases simultaneously showcasing unconventional properties derived from Weyl points, such as chiral anomaly, and multidimensional topological phenomena originating from higher-order topology. The higher-order Weyl semimetal phases, with their higher-order topology arising from quantized dipole or quadrupole bulk polarizations, have been demonstrated in phononics and circuits. Here, we experimentally discover a class of higher-order Weyl semimetal phase in a three-dimensional photonic crystal (PhC), exhibiting the concurrence of the surface and hinge Fermi arcs from the nonzero Chern number and the nontrivial generalized real Chern number, respectively, coined a real higher-order Weyl PhC. Notably, the projected two-dimensional subsystem with kz = 0 is a real Chern insulator, belonging to the Stiefel-Whitney class with real Bloch wavefunctions, which is distinguished fundamentally from the Chern class with complex Bloch wavefunctions. Our work offers an ideal photonic platform for exploring potential applications and material properties associated with the higher-order Weyl points and the Stiefel-Whitney class of topological phases.

Suggested Citation

  • Yuang Pan & Chaoxi Cui & Qiaolu Chen & Fujia Chen & Li Zhang & Yudong Ren & Ning Han & Wenhao Li & Xinrui Li & Zhi-Ming Yu & Hongsheng Chen & Yihao Yang, 2023. "Real higher-order Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42457-2
    DOI: 10.1038/s41467-023-42457-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42457-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42457-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc Serra-Garcia & Valerio Peri & Roman Süsstrunk & Osama R. Bilal & Tom Larsen & Luis Guillermo Villanueva & Sebastian D. Huber, 2018. "Observation of a phononic quadrupole topological insulator," Nature, Nature, vol. 555(7696), pages 342-345, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Haoran Xue & Z. Y. Chen & Zheyu Cheng & J. X. Dai & Yang Long & Y. X. Zhao & Baile Zhang, 2023. "Stiefel-Whitney topological charges in a three-dimensional acoustic nodal-line crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Weiwei Zhu & Haoran Xue & Jiangbin Gong & Yidong Chong & Baile Zhang, 2022. "Time-periodic corner states from Floquet higher-order topology," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Deyuan Zou & Tian Chen & Wenjing He & Jiacheng Bao & Ching Hua Lee & Houjun Sun & Xiangdong Zhang, 2021. "Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Florian Allein & Adamantios Anastasiadis & Rajesh Chaunsali & Ian Frankel & Nicholas Boechler & Fotios K. Diakonos & Georgios Theocharis, 2023. "Strain topological metamaterials and revealing hidden topology in higher-order coordinates," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42457-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.