IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64671-w.html
   My bibliography  Save this article

Observation of returning Thouless pumping

Author

Listed:
  • Zheyu Cheng

    (Nanyang Technological University)

  • Sijie Yue

    (Nanjing University)

  • Yang Long

    (Tongji University)

  • Wentao Xie

    (The Chinese University of Hong Kong)

  • Zixuan Yu

    (Nanyang Technological University)

  • Hau Tian Teo

    (Nanyang Technological University)

  • Y. X. Zhao

    (The University of Hong Kong)

  • Haoran Xue

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong)

  • Baile Zhang

    (Nanyang Technological University
    Nanyang Technological University)

Abstract

Introduced by David Thouless in 1983, Thouless pumping is a driving mechanism for topological systems where the pumped charge is quantized by the Chern number. The recent theoretical demonstration of returning Thouless pumping describes a system where the quantized charge pumped during the first half of the cycle returns to zero in the second half. This mechanism leads to crystalline symmetry-protected delicate topological insulators that, unlike conventional topological bands, are not atomically obstructed and can be described by Wannier functions. More precisely, delicate topologies feature multicellular Wannier functions, extending beyond a single unit cell. Here, by using adding synthetic dimension, we realize a two-dimensional delicate topological insulator consisting of a set of one-dimensional acoustic crystals with finely tuned geometric parameters. Measuring acoustic bands and wavefunctions, we directly observe returning Thouless pumping and symmetric multicellular Wannier functions and establish a bulk-boundary correspondence between Chern numbers of the sub-Brillouin zone and gapless boundary modes. Our experimental demonstration of returning Thouless pumping expands the current understanding of topological phases of matter, enriching it with crystalline symmetries.

Suggested Citation

  • Zheyu Cheng & Sijie Yue & Yang Long & Wentao Xie & Zixuan Yu & Hau Tian Teo & Y. X. Zhao & Haoran Xue & Baile Zhang, 2025. "Observation of returning Thouless pumping," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64671-w
    DOI: 10.1038/s41467-025-64671-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64671-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64671-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marius Jürgensen & Sebabrata Mukherjee & Mikael C. Rechtsman, 2021. "Quantized nonlinear Thouless pumping," Nature, Nature, vol. 596(7870), pages 63-67, August.
    2. Haoran Xue & Yong Ge & Hong-Xiang Sun & Qiang Wang & Ding Jia & Yi-Jun Guan & Shou-Qi Yuan & Yidong Chong & Baile Zhang, 2020. "Observation of an acoustic octupole topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. He Gao & Haoran Xue & Zhongming Gu & Tuo Liu & Jie Zhu & Baile Zhang, 2021. "Non-Hermitian route to higher-order topology in an acoustic crystal," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Marc Serra-Garcia & Valerio Peri & Roman Süsstrunk & Osama R. Bilal & Tom Larsen & Luis Guillermo Villanueva & Sebastian D. Huber, 2018. "Observation of a phononic quadrupole topological insulator," Nature, Nature, vol. 555(7696), pages 342-345, March.
    5. Inbar Hotzen Grinberg & Mao Lin & Cameron Harris & Wladimir A. Benalcazar & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2020. "Robust temporal pumping in a magneto-mechanical topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Zlata Fedorova & Haixin Qiu & Stefan Linden & Johann Kroha, 2020. "Observation of topological transport quantization by dissipation in fast Thouless pumps," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    7. Christopher W. Peterson & Wladimir A. Benalcazar & Taylor L. Hughes & Gaurav Bahl, 2018. "A quantized microwave quadrupole insulator with topologically protected corner states," Nature, Nature, vol. 555(7696), pages 346-350, March.
    8. Xiang Ni & Mengyao Li & Matthew Weiner & Andrea Alù & Alexander B. Khanikaev, 2020. "Demonstration of a quantized acoustic octupole topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Haoran Xue & Z. Y. Chen & Zheyu Cheng & J. X. Dai & Yang Long & Y. X. Zhao & Baile Zhang, 2023. "Stiefel-Whitney topological charges in a three-dimensional acoustic nodal-line crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yi-Ke Sun & Zhong-Lei Shan & Zhen-Nan Tian & Qi-Dai Chen & Xu-Lin Zhang, 2024. "Two-dimensional non-Abelian Thouless pump," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Ziyao Wang & Yan Meng & Bei Yan & Dong Zhao & Linyun Yang & Jingming Chen & Minqi Cheng & Tao Xiao & Perry Ping Shum & Gui-Geng Liu & Yihao Yang & Hongsheng Chen & Xiang Xi & Zhen-Xiao Zhu & Biye Xie , 2025. "Realization of a three-dimensional photonic higher-order topological insulator," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    7. Jia-Hui Zhang & Feng Mei & Yi Li & Ching Hua Lee & Jie Ma & Liantuan Xiao & Suotang Jia, 2025. "Observation of higher-order time-dislocation topological modes," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Weiwei Zhu & Haoran Xue & Jiangbin Gong & Yidong Chong & Baile Zhang, 2022. "Time-periodic corner states from Floquet higher-order topology," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Deyuan Zou & Tian Chen & Wenjing He & Jiacheng Bao & Ching Hua Lee & Houjun Sun & Xiangdong Zhang, 2021. "Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    15. Yu Liu & Yu-Ran Zhang & Yun-Hao Shi & Tao Liu & Congwei Lu & Yong-Yi Wang & Hao Li & Tian-Ming Li & Cheng-Lin Deng & Si-Yun Zhou & Tong Liu & Jia-Chi Zhang & Gui-Han Liang & Zheng-Yang Mei & Wei-Guo M, 2025. "Interplay between disorder and topology in Thouless pumping on a superconducting quantum processor," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    16. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Li, Rujiang & Kong, Xiangyu & Wang, Wencai & Jia, Yongtao & Liu, Ying, 2025. "Newton conjugate gradient method for discrete nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    19. Kartashov, Yaroslav V., 2025. "Quadratic solitons in higher-order topological insulators," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    20. Junhong Liu & Yunfei Xu & Rusong Li & Yongqiang Sun & Kaiyao Xin & Jinchuan Zhang & Quanyong Lu & Ning Zhuo & Junqi Liu & Lijun Wang & Fengmin Cheng & Shuman Liu & Fengqi Liu & Shenqiang Zhai, 2024. "High-power electrically pumped terahertz topological laser based on a surface metallic Dirac-vortex cavity," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64671-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.