IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42287-2.html
   My bibliography  Save this article

Electric control of spin transitions at the atomic scale

Author

Listed:
  • Piotr Kot

    (Max-Planck-Institut für Festkörperforschung)

  • Maneesha Ismail

    (Max-Planck-Institut für Festkörperforschung)

  • Robert Drost

    (Max-Planck-Institut für Festkörperforschung)

  • Janis Siebrecht

    (Max-Planck-Institut für Festkörperforschung)

  • Haonan Huang

    (Max-Planck-Institut für Festkörperforschung)

  • Christian R. Ast

    (Max-Planck-Institut für Festkörperforschung)

Abstract

Electric control of spins has been a longstanding goal in the field of solid state physics due to the potential for increased efficiency in information processing. This efficiency can be optimized by transferring spintronics to the atomic scale. We present electric control of spin resonance transitions in single TiH molecules by employing electron spin resonance scanning tunneling microscopy (ESR-STM). We find strong bias voltage dependent shifts in the ESR signal of about ten times its line width. We attribute this to the electric field in the tunnel junction, which induces a displacement of the spin system changing the g-factor and the effective magnetic field of the tip. We demonstrate direct electric control of the spin transitions in coupled TiH dimers. Our findings open up new avenues for fast coherent control of coupled spin systems and expands on the understanding of spin electric coupling.

Suggested Citation

  • Piotr Kot & Maneesha Ismail & Robert Drost & Janis Siebrecht & Haonan Huang & Christian R. Ast, 2023. "Electric control of spin transitions at the atomic scale," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42287-2
    DOI: 10.1038/s41467-023-42287-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42287-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42287-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guilherme Tosi & Fahd A. Mohiyaddin & Vivien Schmitt & Stefanie Tenberg & Rajib Rahman & Gerhard Klimeck & Andrea Morello, 2017. "Silicon quantum processor with robust long-distance qubit couplings," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    2. W. Eerenstein & N. D. Mathur & J. F. Scott, 2006. "Multiferroic and magnetoelectric materials," Nature, Nature, vol. 442(7104), pages 759-765, August.
    3. Serwan Asaad & Vincent Mourik & Benjamin Joecker & Mark A. I. Johnson & Andrew D. Baczewski & Hannes R. Firgau & Mateusz T. Mądzik & Vivien Schmitt & Jarryd J. Pla & Fay E. Hudson & Kohei M. Itoh & Je, 2020. "Coherent electrical control of a single high-spin nucleus in silicon," Nature, Nature, vol. 579(7798), pages 205-209, March.
    4. B. E. Kane, 1998. "A silicon-based nuclear spin quantum computer," Nature, Nature, vol. 393(6681), pages 133-137, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sellier, Jean Michel, 2018. "Combining neural networks and signed particles to simulate quantum systems more efficiently," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 62-71.
    2. Qiao, Bi & Xing, X.S. & Ruda, H.E., 2005. "Kinetic equations for quantum information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 319-332.
    3. Jinfeng Liu & Xiangyu Gao & Haonan Jin & Kaile Ren & Jingyu Guo & Liao Qiao & Chaorui Qiu & Wei Chen & Yuhang He & Shuxiang Dong & Zhuo Xu & Fei Li, 2022. "Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Procopios Constantinou & Taylor J. Z. Stock & Li-Ting Tseng & Dimitrios Kazazis & Matthias Muntwiler & Carlos A. F. Vaz & Yasin Ekinci & Gabriel Aeppli & Neil J. Curson & Steven R. Schofield, 2024. "EUV-induced hydrogen desorption as a step towards large-scale silicon quantum device patterning," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Piyush Agarwal & Lisen Huang & Sze Lim & Ranjan Singh, 2022. "Electric-field control of nonlinear THz spintronic emitters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Pingfan Gu & Cong Wang & Dan Su & Zehao Dong & Qiuyuan Wang & Zheng Han & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Young Sun & Yu Ye, 2023. "Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Shuai Xu & Jiesu Wang & Pan Chen & Kuijuan Jin & Cheng Ma & Shiyao Wu & Erjia Guo & Chen Ge & Can Wang & Xiulai Xu & Hongbao Yao & Jingyi Wang & Donggang Xie & Xinyan Wang & Kai Chang & Xuedong Bai & , 2023. "Magnetoelectric coupling in multiferroics probed by optical second harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. M. Usama Hasan & Alexander E. Kossak & Geoffrey S. D. Beach, 2023. "Large exchange bias enhancement and control of ferromagnetic energy landscape by solid-state hydrogen gating," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Songhua Cai & Yingzhuo Lun & Dianxiang Ji & Peng Lv & Lu Han & Changqing Guo & Yipeng Zang & Si Gao & Yifan Wei & Min Gu & Chunchen Zhang & Zhengbin Gu & Xueyun Wang & Christopher Addiego & Daining Fa, 2022. "Enhanced polarization and abnormal flexural deformation in bent freestanding perovskite oxides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Roland W. Scholz, 2016. "Sustainable Digital Environments: What Major Challenges Is Humankind Facing?," Sustainability, MDPI, vol. 8(8), pages 1-31, July.
    12. S. A. Saleh, 2019. "Study of Microstructural, Electrical and Dielectric Properties of La 0.9 Pb 0.1 MnO 3 and La 0.8 Y 0.1 Pb 0.1 MnO 3 Ceramics," Scientific Review, Academic Research Publishing Group, vol. 5(2), pages 33-44, 02-2019.
    13. Cafaro, Carlo, 2017. "Geometric algebra and information geometry for quantum computational software," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 154-196.
    14. Lai Xu & Aamir Muhammad & Yifei Pu & Jiliu Zhou & Yi Zhang, 2019. "Fractional-order quantum particle swarm optimization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    15. Qifeng Hu & Yuqiang Huang & Yang Wang & Sujuan Ding & Minjie Zhang & Chenqiang Hua & Linjun Li & Xiangfan Xu & Jinbo Yang & Shengjun Yuan & Kenji Watanabe & Takashi Taniguchi & Yunhao Lu & Chuanhong J, 2024. "Ferrielectricity controlled widely-tunable magnetoelectric coupling in van der Waals multiferroics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Shadi Safaei Jazi & Ihar Faniayeu & Rafael Cichelero & Dimitrios C. Tzarouchis & Mohammad Mahdi Asgari & Alexandre Dmitriev & Shanhui Fan & Viktar Asadchy, 2024. "Optical Tellegen metamaterial with spontaneous magnetization," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Sellier, J.M. & Dimov, I., 2015. "Toward solotronics design in the Wigner formalism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 287-296.
    18. Sellier, J.M. & Dimov, I., 2014. "A Wigner approach to the study of wave packets in ordered and disordered arrays of dopants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 185-190.
    19. Ellen Fogh & Bastian Klemke & Manfred Reehuis & Philippe Bourges & Christof Niedermayer & Sonja Holm-Dahlin & Oksana Zaharko & Jürg Schefer & Andreas B. Kristensen & Michael K. Sørensen & Sebastian Pa, 2023. "Tuning magnetoelectricity in a mixed-anisotropy antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Rishabh Upadhyay & Dmitry S. Golubev & Yu-Cheng Chang & George Thomas & Andrew Guthrie & Joonas T. Peltonen & Jukka P. Pekola, 2024. "Microwave quantum diode," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42287-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.