IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42155-z.html
   My bibliography  Save this article

Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy

Author

Listed:
  • Kaiyuan Wang

    (Shenyang Pharmaceutical University
    National University of Singapore)

  • Xuanbo Zhang

    (Shenyang Pharmaceutical University
    National University of Singapore)

  • Hao Ye

    (Shenyang Pharmaceutical University
    Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich)

  • Xia Wang

    (Shenyang Pharmaceutical University)

  • Zhijin Fan

    (South China University of Technology)

  • Qi Lu

    (Shenyang Pharmaceutical University)

  • Songhao Li

    (Shenyang Pharmaceutical University)

  • Jian Zhao

    (Shenyang Pharmaceutical University)

  • Shunzhe Zheng

    (Shenyang Pharmaceutical University)

  • Zhonggui He

    (Shenyang Pharmaceutical University)

  • Qianqian Ni

    (National University of Singapore
    National University of Singapore
    National University of Singapore)

  • Xiaoyuan Chen

    (National University of Singapore
    National University of Singapore
    National University of Singapore
    Agency for Science, Technology, and Research (A*STAR))

  • Jin Sun

    (Shenyang Pharmaceutical University)

Abstract

Cytokine therapy, involving interleukin-15 (IL-15), is a promising strategy for cancer immunotherapy. However, clinical application has been limited due to severe toxicity and the relatively low immune response rate, caused by wide distribution of cytokine receptors, systemic immune activation and short half-life of IL-15. Here we show that a biomimetic nanovaccine, developed to co-deliver IL-15 and an antigen/major histocompatibility complex (MHC) selectively targets IL-15 to antigen-specific cytotoxic T lymphocytes (CTL), thereby reducing off-target toxicity. The biomimetic nanovaccine is composed of cytomembrane vesicles, derived from genetically engineered dendritic cells (DC), onto which IL-15/IL-15 receptor α (IL-15Rα), tumor-associated antigenic (TAA) peptide/MHC-I, and relevant costimulatory molecules are simultaneously anchored. We demonstrate that, in contrast to conventional IL-15 therapy, the biomimetic nanovaccine with multivalent IL-15 self-transpresentation (biNV-IL-15) prolonged blood circulation of the cytokine with an 8.2-fold longer half-life than free IL-15 and improved the therapeutic window. This dual targeting strategy allows for spatiotemporal manipulation of therapeutic T cells, elicits broad spectrum antigen-specific T cell responses, and promotes cures in multiple syngeneic tumor models with minimal systemic side effects.

Suggested Citation

  • Kaiyuan Wang & Xuanbo Zhang & Hao Ye & Xia Wang & Zhijin Fan & Qi Lu & Songhao Li & Jian Zhao & Shunzhe Zheng & Zhonggui He & Qianqian Ni & Xiaoyuan Chen & Jin Sun, 2023. "Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42155-z
    DOI: 10.1038/s41467-023-42155-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42155-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42155-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniela Schmid & Chun Gwon Park & Christina A. Hartl & Nikita Subedi & Adam N. Cartwright & Regina Bou Puerto & Yiran Zheng & James Maiarana & Gordon J. Freeman & Kai W. Wucherpfennig & Darrell J. Irv, 2017. "T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    2. Che-Ming J. Hu & Ronnie H. Fang & Kuei-Chun Wang & Brian T. Luk & Soracha Thamphiwatana & Diana Dehaini & Phu Nguyen & Pavimol Angsantikul & Cindy H. Wen & Ashley V. Kroll & Cody Carpenter & Manikanta, 2015. "Nanoparticle biointerfacing by platelet membrane cloaking," Nature, Nature, vol. 526(7571), pages 118-121, October.
    3. Kaiyuan Wang & Yang Li & Xia Wang & Zhijun Zhang & Liping Cao & Xiaoyuan Fan & Bin Wan & Fengxiang Liu & Xuanbo Zhang & Zhonggui He & Yingtang Zhou & Dong Wang & Jin Sun & Xiaoyuan Chen, 2023. "Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Joan Massagué & Anna C. Obenauf, 2016. "Metastatic colonization by circulating tumour cells," Nature, Nature, vol. 529(7586), pages 298-306, January.
    5. Yuan Zhang & Na Li & Heikyung Suh & Darrell J. Irvine, 2018. "Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    6. Qian Chen & Ligeng Xu & Chao Liang & Chao Wang & Rui Peng & Zhuang Liu, 2016. "Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
    7. Linda M. Wakim & Michael J. Bevan, 2011. "Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection," Nature, Nature, vol. 471(7340), pages 629-632, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huapan Fang & Zhaopei Guo & Jie Chen & Lin Lin & Yingying Hu & Yanhui Li & Huayu Tian & Xuesi Chen, 2021. "Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    2. Yun-Lan Li & Hai-Ling Wang & Zhong-Hong Zhu & Yu-Feng Wang & Fu-Pei Liang & Hua-Hong Zou, 2024. "Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Xin Li & Tuying Yong & Zhaohan Wei & Nana Bie & Xiaoqiong Zhang & Guiting Zhan & Jianye Li & Jiaqi Qin & Jingjing Yu & Bixiang Zhang & Lu Gan & Xiangliang Yang, 2022. "Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Junbin Gao & Hanfeng Qin & Fei Wang & Lu Liu & Hao Tian & Hong Wang & Shuanghu Wang & Juanfeng Ou & Yicheng Ye & Fei Peng & Yingfeng Tu, 2023. "Hyperthermia-triggered biomimetic bubble nanomachines," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Li, Zhijing & Lei, Hui & Kan, Ankang & Xie, Huaqing & Yu, Wei, 2021. "Photothermal applications based on graphene and its derivatives: A state-of-the-art review," Energy, Elsevier, vol. 216(C).
    6. Rong Xiao & Deshu Xu & Meili Zhang & Zhanghua Chen & Li Cheng & Songjie Du & Mingfei Lu & Tonghai Zhou & Ruoyan Li & Fan Bai & Yue Huang, 2024. "Aneuploid embryonic stem cells drive teratoma metastasis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Yan Zou & Yajing Sun & Yibin Wang & Dongya Zhang & Huiqing Yang & Xin Wang & Meng Zheng & Bingyang Shi, 2023. "Cancer cell-mitochondria hybrid membrane coated Gboxin loaded nanomedicines for glioblastoma treatment," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Xiaoxue Fu & Xiaojuan Yu & Junhao Jiang & Jiaxin Yang & Lu Chen & Zhangyou Yang & Chao Yu, 2022. "Small molecule-assisted assembly of multifunctional ceria nanozymes for synergistic treatment of atherosclerosis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Yue Yan & Binlong Chen & Qingqing Yin & Zenghui Wang & Ye Yang & Fangjie Wan & Yaoqi Wang & Mingmei Tang & Heming Xia & Meifang Chen & Jianxiong Liu & Siling Wang & Qiang Zhang & Yiguang Wang, 2022. "Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Isabelle Jia-Hui Foo & Brendon Y. Chua & E. Bridie Clemens & So Young Chang & Xiaoxiao Jia & Hayley A. McQuilten & Ashley Huey Yiing Yap & Aira F. Cabug & Mitra Ashayeripanah & Hamish E. G. McWilliam , 2024. "Prior infection with unrelated neurotropic virus exacerbates influenza disease and impairs lung T cell responses," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Rong Sun & Mingzhu Liu & Jianping Lu & Binbin Chu & Yunmin Yang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Jiaqi Yan & Xiaodong Ma & Danna Liang & Meixin Ran & Dongdong Zheng & Xiaodong Chen & Shichong Zhou & Weijian Sun & Xian Shen & Hongbo Zhang, 2023. "An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    13. Zhaoting Li & Yingyue Ding & Jun Liu & Jianxin Wang & Fanyi Mo & Yixin Wang & Ting-Jing Chen-Mayfield & Paul M. Sondel & Seungpyo Hong & Quanyin Hu, 2022. "Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Zhiyuan Zheng & Ya-nan Li & Shanfen Jia & Mengting Zhu & Lijuan Cao & Min Tao & Jingting Jiang & Shenghua Zhan & Yongjing Chen & Ping-Jin Gao & Weiguo Hu & Ying Wang & Changshun Shao & Yufang Shi, 2021. "Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    15. Yuxin Guo & Shao-Zhe Wang & Xinping Zhang & Hao-Ran Jia & Ya-Xuan Zhu & Xiaodong Zhang & Ge Gao & Yao-Wen Jiang & Chengcheng Li & Xiaokai Chen & Shun-Yu Wu & Yi Liu & Fu-Gen Wu, 2022. "In situ generation of micrometer-sized tumor cell-derived vesicles as autologous cancer vaccines for boosting systemic immune responses," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    16. Dongdong Wang & Jiawei Liu & Changlai Wang & Weiyun Zhang & Guangbao Yang & Yun Chen & Xiaodong Zhang & Yinglong Wu & Long Gu & Hongzhong Chen & Wei Yuan & Xiaokai Chen & Guofeng Liu & Bin Gao & Qianw, 2023. "Microbial synthesis of Prussian blue for potentiating checkpoint blockade immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Kaiyuan Wang & Yang Li & Xia Wang & Zhijun Zhang & Liping Cao & Xiaoyuan Fan & Bin Wan & Fengxiang Liu & Xuanbo Zhang & Zhonggui He & Yingtang Zhou & Dong Wang & Jin Sun & Xiaoyuan Chen, 2023. "Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Huiling Zhou & Dongsheng Tang & Yingjie Yu & Lingpu Zhang & Bin Wang & Johannes Karges & Haihua Xiao, 2023. "Theranostic imaging and multimodal photodynamic therapy and immunotherapy using the mTOR signaling pathway," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    19. W. Dean Pontius & Ellen S. Hong & Zachary J. Faber & Jeremy Gray & Craig D. Peacock & Ian Bayles & Katreya Lovrenert & Diana H. Chin & Berkley E. Gryder & Cynthia F. Bartels & Peter C. Scacheri, 2023. "Temporal chromatin accessibility changes define transcriptional states essential for osteosarcoma metastasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42155-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.