IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41900-8.html
   My bibliography  Save this article

Radiolytically reworked Archean organic matter in a habitable deep ancient high-temperature brine

Author

Listed:
  • Devan M. Nisson

    (Princeton University)

  • Clifford C. Walters

    (University of Texas)

  • Martha L. Chacón-Patiño

    (National High Magnetic Field Laboratory)

  • Chad R. Weisbrod

    (National High Magnetic Field Laboratory)

  • Thomas L. Kieft

    (New Mexico Institute of Mining and Technology)

  • Barbara Sherwood Lollar

    (University of Toronto
    Université Paris Cité)

  • Oliver Warr

    (University of Ottawa)

  • Julio Castillo

    (University of the Free State)

  • Scott M. Perl

    (California Institute of Technology)

  • Errol D. Cason

    (University of the Free State)

  • Barry M. Freifeld

    (Lawrence Berkeley National Laboratory)

  • Tullis C. Onstott

    (Princeton University)

Abstract

Investigations of abiotic and biotic contributions to dissolved organic carbon (DOC) are required to constrain microbial habitability in continental subsurface fluids. Here we investigate a large (101–283 mg C/L) DOC pool in an ancient (>1Ga), high temperature (45–55 °C), low biomass (102−104 cells/mL), and deep (3.2 km) brine from an uranium-enriched South African gold mine. Excitation-emission matrices (EEMs), negative electrospray ionization (–ESI) 21 tesla Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and amino acid analyses suggest the brine DOC is primarily radiolytically oxidized kerogen-rich shales or reefs, methane and ethane, with trace amounts of C3–C6 hydrocarbons and organic sulfides. δ2H and δ13C of C1–C3 hydrocarbons are consistent with abiotic origins. These findings suggest water-rock processes control redox and C cycling, helping support a meagre, slow biosphere over geologic time. A radiolytic-driven, habitable brine may signal similar settings are good targets in the search for life beyond Earth.

Suggested Citation

  • Devan M. Nisson & Clifford C. Walters & Martha L. Chacón-Patiño & Chad R. Weisbrod & Thomas L. Kieft & Barbara Sherwood Lollar & Oliver Warr & Julio Castillo & Scott M. Perl & Errol D. Cason & Barry M, 2023. "Radiolytically reworked Archean organic matter in a habitable deep ancient high-temperature brine," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41900-8
    DOI: 10.1038/s41467-023-41900-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41900-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41900-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carolyn M. Aitken & D. M. Jones & S. R. Larter, 2004. "Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs," Nature, Nature, vol. 431(7006), pages 291-294, September.
    2. Justine F. Sauvage & Ashton Flinders & Arthur J. Spivack & Robert Pockalny & Ann G. Dunlea & Chloe H. Anderson & David C. Smith & Richard W. Murray & Steven D’Hondt, 2021. "The contribution of water radiolysis to marine sedimentary life," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. O. Warr & C. J. Ballentine & T. C. Onstott & D. M. Nisson & T. L. Kieft & D. J. Hillegonds & B. Sherwood Lollar, 2022. "86Kr excess and other noble gases identify a billion-year-old radiogenically-enriched groundwater system," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Barbara Sherwood Lollar & T. C. Onstott & G. Lacrampe-Couloume & C. J. Ballentine, 2014. "The contribution of the Precambrian continental lithosphere to global H2 production," Nature, Nature, vol. 516(7531), pages 379-382, December.
    5. Alexandra Moura & Michael A Savageau & Rui Alves, 2013. "Relative Amino Acid Composition Signatures of Organisms and Environments," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    6. G. Holland & B. Sherwood Lollar & L. Li & G. Lacrampe-Couloume & G. F. Slater & C. J. Ballentine, 2013. "Deep fracture fluids isolated in the crust since the Precambrian era," Nature, Nature, vol. 497(7449), pages 357-360, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Guang-Chao Yang & Lei Zhou & Serge Maurice Mbadinga & Ji-Dong Gu & Bo-Zhong Mu, 2019. "Bioconversion Pathway of CO 2 in the Presence of Ethanol by Methanogenic Enrichments from Production Water of a High-Temperature Petroleum Reservoir," Energies, MDPI, vol. 12(5), pages 1-15, March.
    3. S. Emil Ruff & Pauline Humez & Isabella Hrabe Angelis & Muhe Diao & Michael Nightingale & Sara Cho & Liam Connors & Olukayode O. Kuloyo & Alan Seltzer & Samuel Bowman & Scott D. Wankel & Cynthia N. Mc, 2023. "Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Lu Wang & Zhijun Jin & Xiao Chen & Yutong Su & Xiaowei Huang, 2023. "The Origin and Occurrence of Natural Hydrogen," Energies, MDPI, vol. 16(5), pages 1-18, March.
    5. Koudai Taguchi & Alexis Gilbert & Barbara Sherwood Lollar & Thomas Giunta & Christopher J. Boreham & Qi Liu & Juske Horita & Yuichiro Ueno, 2022. "Low 13C-13C abundances in abiotic ethane," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Patrícia M. Domingues & Vanessa Oliveira & Luísa Seuanes Serafim & Newton C. M. Gomes & Ângela Cunha, 2020. "Biosurfactant Production in Sub-Oxic Conditions Detected in Hydrocarbon-Degrading Isolates from Marine and Estuarine Sediments," IJERPH, MDPI, vol. 17(5), pages 1-17, March.
    7. Xiong Cheng & Dujie Hou, 2021. "Characterization of Severely Biodegraded Crude Oils Using Negative-Ion ESI Orbitrap MS, GC-NCD and GC-SCD: Insights into Heteroatomic Compounds Biodegradation," Energies, MDPI, vol. 14(2), pages 1-17, January.
    8. Geoff A. Freeze & Emily Stein & Patrick V. Brady, 2019. "Post-Closure Performance Assessment for Deep Borehole Disposal of Cs/Sr Capsules," Energies, MDPI, vol. 12(10), pages 1-15, May.
    9. Xia, Wenjie & Shen, Weijun & Yu, Li & Zheng, Chenggang & Yu, Weichu & Tang, Yongchun, 2016. "Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir," Applied Energy, Elsevier, vol. 171(C), pages 646-655.
    10. Geoff A. Freeze & Emily Stein & Patrick V. Brady & Carlos Lopez & David Sassani & Karl Travis & Fergus Gibb & John Beswick, 2019. "Deep Borehole Disposal Safety Case," Energies, MDPI, vol. 12(11), pages 1-21, June.
    11. O. Warr & C. J. Ballentine & T. C. Onstott & D. M. Nisson & T. L. Kieft & D. J. Hillegonds & B. Sherwood Lollar, 2022. "86Kr excess and other noble gases identify a billion-year-old radiogenically-enriched groundwater system," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41900-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.