IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41897-0.html
   My bibliography  Save this article

PET-measured human dopamine synthesis capacity and receptor availability predict trading rewards and time-costs during foraging

Author

Listed:
  • Angela M. Ianni

    (Clinical & Translational Neuroscience Branch, National Institutes of Mental Health, Intramural Research Program, National Institutes of Health
    University of Oxford
    University of Pittsburgh)

  • Daniel P. Eisenberg

    (Clinical & Translational Neuroscience Branch, National Institutes of Mental Health, Intramural Research Program, National Institutes of Health)

  • Erie D. Boorman

    (University of Oxford)

  • Sara M. Constantino

    (New York University
    Northeastern University
    Northeastern University
    Princeton University)

  • Catherine E. Hegarty

    (Clinical & Translational Neuroscience Branch, National Institutes of Mental Health, Intramural Research Program, National Institutes of Health)

  • Michael D. Gregory

    (Clinical & Translational Neuroscience Branch, National Institutes of Mental Health, Intramural Research Program, National Institutes of Health)

  • Joseph C. Masdeu

    (Clinical & Translational Neuroscience Branch, National Institutes of Mental Health, Intramural Research Program, National Institutes of Health
    Houston Methodist Institute for Academic Medicine
    Weill Cornell Medicine)

  • Philip D. Kohn

    (Clinical & Translational Neuroscience Branch, National Institutes of Mental Health, Intramural Research Program, National Institutes of Health)

  • Timothy E. Behrens

    (University of Oxford)

  • Karen F. Berman

    (Clinical & Translational Neuroscience Branch, National Institutes of Mental Health, Intramural Research Program, National Institutes of Health)

Abstract

Foraging behavior requires weighing costs of time to decide when to leave one reward patch to search for another. Computational and animal studies suggest that striatal dopamine is key to this process; however, the specific role of dopamine in foraging behavior in humans is not well characterized. We use positron emission tomography (PET) imaging to directly measure dopamine synthesis capacity and D1 and D2/3 receptor availability in 57 healthy adults who complete a computerized foraging task. Using voxelwise data and principal component analysis to identify patterns of variation across PET measures, we show that striatal D1 and D2/3 receptor availability and a pattern of mesolimbic and anterior cingulate cortex dopamine function are important for adjusting the threshold for leaving a patch to explore, with specific sensitivity to changes in travel time. These findings suggest a key role for dopamine in trading reward benefits against temporal costs to modulate behavioral adaptions to changes in the reward environment critical for foraging.

Suggested Citation

  • Angela M. Ianni & Daniel P. Eisenberg & Erie D. Boorman & Sara M. Constantino & Catherine E. Hegarty & Michael D. Gregory & Joseph C. Masdeu & Philip D. Kohn & Timothy E. Behrens & Karen F. Berman, 2023. "PET-measured human dopamine synthesis capacity and receptor availability predict trading rewards and time-costs during foraging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41897-0
    DOI: 10.1038/s41467-023-41897-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41897-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41897-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neil Garrett & Nathaniel D. Daw, 2020. "Biased belief updating and suboptimal choice in foraging decisions," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Ali Mohebi & Jeffrey R. Pettibone & Arif A. Hamid & Jenny-Marie T. Wong & Leah T. Vinson & Tommaso Patriarchi & Lin Tian & Robert T. Kennedy & Joshua D. Berke, 2019. "Publisher Correction: Dissociable dopamine dynamics for learning and motivation," Nature, Nature, vol. 571(7763), pages 3-3, July.
    3. Ali Mohebi & Jeffrey R. Pettibone & Arif A. Hamid & Jenny-Marie T. Wong & Leah T. Vinson & Tommaso Patriarchi & Lin Tian & Robert T. Kennedy & Joshua D. Berke, 2019. "Dissociable dopamine dynamics for learning and motivation," Nature, Nature, vol. 570(7759), pages 65-70, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Han Guo & Jian-Bo Jiang & Wei Xu & Mu-Tian Zhang & Hui Chen & Huan-Ying Shi & Lu Wang & Miao He & Michael Lazarus & Shan-Qun Li & Zhi-Li Huang & Wei-Min Qu, 2023. "Parasubthalamic calretinin neurons modulate wakefulness associated with exploration in male mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Armando G. Salinas & Jeong Oen Lee & Shana M. Augustin & Shiliang Zhang & Tommaso Patriarchi & Lin Tian & Marisela Morales & Yolanda Mateo & David M. Lovinger, 2023. "Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Susanne Prokop & Péter Ábrányi-Balogh & Benjámin Barti & Márton Vámosi & Miklós Zöldi & László Barna & Gabriella M. Urbán & András Dávid Tóth & Barna Dudok & Attila Egyed & Hui Deng & Gian Marco Leggi, 2021. "PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    7. Johannes Algermissen & Jennifer C. Swart & René Scheeringa & Roshan Cools & Hanneke E. M. den Ouden, 2024. "Prefrontal signals precede striatal signals for biased credit assignment in motivational learning biases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Xin-Yue Wang & Wen-Bin Jia & Xiang Xu & Rui Chen & Liang-Biao Wang & Xiao-Jing Su & Peng-Fei Xu & Xiao-Qing Liu & Jie Wen & Xiao-Yuan Song & Yuan-Yuan Liu & Zhi Zhang & Xin-Feng Liu & Yan Zhang, 2023. "A glutamatergic DRN–VTA pathway modulates neuropathic pain and comorbid anhedonia-like behavior in mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Miguel Skirzewski & Oren Princz-Lebel & Liliana German-Castelan & Alycia M. Crooks & Gerard Kyungwook Kim & Sophie Henke Tarnow & Amy Reichelt & Sara Memar & Daniel Palmer & Yulong Li & R. Jane Rylett, 2022. "Continuous cholinergic-dopaminergic updating in the nucleus accumbens underlies approaches to reward-predicting cues," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Ali Ghazizadeh & Okihide Hikosaka, 2022. "Salience memories formed by value, novelty and aversiveness jointly shape object responses in the prefrontal cortex and basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Abigail Kalmbach & Vanessa Winiger & Nuri Jeong & Arun Asok & Charles R. Gallistel & Peter D. Balsam & Eleanor H. Simpson, 2022. "Dopamine encodes real-time reward availability and transitions between reward availability states on different timescales," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Carole Morel & Sarah E. Montgomery & Long Li & Romain Durand-de Cuttoli & Emily M. Teichman & Barbara Juarez & Nikos Tzavaras & Stacy M. Ku & Meghan E. Flanigan & Min Cai & Jessica J. Walsh & Scott J., 2022. "Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Lior Matityahu & Naomi Gilin & Gideon A. Sarpong & Yara Atamna & Lior Tiroshi & Nicolas X. Tritsch & Jeffery R. Wickens & Joshua A. Goldberg, 2023. "Acetylcholine waves and dopamine release in the striatum," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    15. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41897-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.