IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39554-7.html
   My bibliography  Save this article

AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction

Author

Listed:
  • Zengpeng Han

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Nengsong Luo

    (Huazhong University of Science and Technology)

  • Wenyu Ma

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaodong Liu

    (The Chinese University of Hong Kong)

  • Yuxiang Cai

    (Huazhong University of Science and Technology)

  • Jiaxin Kou

    (Huazhong University of Science and Technology)

  • Jie Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lei Li

    (Chinese Academy of Sciences)

  • Siqi Peng

    (Wuhan University)

  • Zihong Xu

    (Wuhan University)

  • Wen Zhang

    (Wuhan University)

  • Yuxiang Qiu

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yang Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chaohui Ye

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Kunzhang Lin

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Fuqiang Xu

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Viral tracers that enable efficient retrograde labeling of projection neurons are powerful vehicles for structural and functional dissections of the neural circuit and for the treatment of brain diseases. Currently, some recombinant adeno-associated viruses (rAAVs) based on capsid engineering are widely used for retrograde tracing, but display undesirable brain area selectivity due to inefficient retrograde transduction in certain neural connections. Here we developed an easily editable toolkit to produce high titer AAV11 and demonstrated that it exhibits potent and stringent retrograde labeling of projection neurons in adult male wild-type or Cre transgenic mice. AAV11 can function as a powerful retrograde viral tracer complementary to AAV2-retro in multiple neural connections. In combination with fiber photometry, AAV11 can be used to monitor neuronal activities in the functional network by retrograde delivering calcium-sensitive indicator under the control of a neuron-specific promoter or the Cre-lox system. Furthermore, we showed that GfaABC1D promoter embedding AAV11 is superior to AAV8 and AAV5 in astrocytic tropism in vivo, combined with bidirectional multi-vector axoastrocytic labeling, AAV11 can be used to study neuron-astrocyte connection. Finally, we showed that AAV11 allows for analyzing circuit connectivity difference in the brains of the Alzheimer’s disease and control mice. These properties make AAV11 a promising tool for mapping and manipulating neural circuits and for gene therapy of some neurological and neurodegenerative disorders.

Suggested Citation

  • Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39554-7
    DOI: 10.1038/s41467-023-39554-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39554-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39554-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hung-Lun Hsu & Alexander Brown & Anna B. Loveland & Anoushka Lotun & Meiyu Xu & Li Luo & Guangchao Xu & Jia Li & Lingzhi Ren & Qin Su & Dominic J. Gessler & Yuquan Wei & Phillip W. L. Tai & Andrei A. , 2020. "Structural characterization of a novel human adeno-associated virus capsid with neurotropic properties," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Ali Mohebi & Jeffrey R. Pettibone & Arif A. Hamid & Jenny-Marie T. Wong & Leah T. Vinson & Tommaso Patriarchi & Lin Tian & Robert T. Kennedy & Joshua D. Berke, 2019. "Publisher Correction: Dissociable dopamine dynamics for learning and motivation," Nature, Nature, vol. 571(7763), pages 3-3, July.
    3. S. Pillay & N. L. Meyer & A. S. Puschnik & O. Davulcu & J. Diep & Y. Ishikawa & L. T. Jae & J. E. Wosen & C. M. Nagamine & M. S. Chapman & J. E. Carette, 2016. "An essential receptor for adeno-associated virus infection," Nature, Nature, vol. 530(7588), pages 108-112, February.
    4. Zheng Wu & Matthew Parry & Xiao-Yi Hou & Min-Hui Liu & Hui Wang & Rachel Cain & Zi-Fei Pei & Yu-Chen Chen & Zi-Yuan Guo & Sambangi Abhijeet & Gong Chen, 2020. "Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    5. Hanchuan Peng & Peng Xie & Lijuan Liu & Xiuli Kuang & Yimin Wang & Lei Qu & Hui Gong & Shengdian Jiang & Anan Li & Zongcai Ruan & Liya Ding & Zizhen Yao & Chao Chen & Mengya Chen & Tanya L. Daigle & R, 2021. "Morphological diversity of single neurons in molecularly defined cell types," Nature, Nature, vol. 598(7879), pages 174-181, October.
    6. Thomas R. Insel, 2010. "Rethinking schizophrenia," Nature, Nature, vol. 468(7321), pages 187-193, November.
    7. Bárbara Coimbra & Carina Soares-Cunha & Nivaldo A P Vasconcelos & Ana Verónica Domingues & Sónia Borges & Nuno Sousa & Ana João Rodrigues, 2019. "Role of laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    8. Keiichiro Suzuki & Yuji Tsunekawa & Reyna Hernandez-Benitez & Jun Wu & Jie Zhu & Euiseok J. Kim & Fumiyuki Hatanaka & Mako Yamamoto & Toshikazu Araoka & Zhe Li & Masakazu Kurita & Tomoaki Hishida & Mo, 2016. "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration," Nature, Nature, vol. 540(7631), pages 144-149, December.
    9. Ali Mohebi & Jeffrey R. Pettibone & Arif A. Hamid & Jenny-Marie T. Wong & Leah T. Vinson & Tommaso Patriarchi & Lin Tian & Robert T. Kennedy & Joshua D. Berke, 2019. "Dissociable dopamine dynamics for learning and motivation," Nature, Nature, vol. 570(7759), pages 65-70, June.
    10. Tsai-Wen Chen & Trevor J. Wardill & Yi Sun & Stefan R. Pulver & Sabine L. Renninger & Amy Baohan & Eric R. Schreiter & Rex A. Kerr & Michael B. Orger & Vivek Jayaraman & Loren L. Looger & Karel Svobod, 2013. "Ultrasensitive fluorescent proteins for imaging neuronal activity," Nature, Nature, vol. 499(7458), pages 295-300, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Miguel Skirzewski & Oren Princz-Lebel & Liliana German-Castelan & Alycia M. Crooks & Gerard Kyungwook Kim & Sophie Henke Tarnow & Amy Reichelt & Sara Memar & Daniel Palmer & Yulong Li & R. Jane Rylett, 2022. "Continuous cholinergic-dopaminergic updating in the nucleus accumbens underlies approaches to reward-predicting cues," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    4. Han Guo & Jian-Bo Jiang & Wei Xu & Mu-Tian Zhang & Hui Chen & Huan-Ying Shi & Lu Wang & Miao He & Michael Lazarus & Shan-Qun Li & Zhi-Li Huang & Wei-Min Qu, 2023. "Parasubthalamic calretinin neurons modulate wakefulness associated with exploration in male mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Armando G. Salinas & Jeong Oen Lee & Shana M. Augustin & Shiliang Zhang & Tommaso Patriarchi & Lin Tian & Marisela Morales & Yolanda Mateo & David M. Lovinger, 2023. "Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Ali Ghazizadeh & Okihide Hikosaka, 2022. "Salience memories formed by value, novelty and aversiveness jointly shape object responses in the prefrontal cortex and basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Angela M. Ianni & Daniel P. Eisenberg & Erie D. Boorman & Sara M. Constantino & Catherine E. Hegarty & Michael D. Gregory & Joseph C. Masdeu & Philip D. Kohn & Timothy E. Behrens & Karen F. Berman, 2023. "PET-measured human dopamine synthesis capacity and receptor availability predict trading rewards and time-costs during foraging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Abigail Kalmbach & Vanessa Winiger & Nuri Jeong & Arun Asok & Charles R. Gallistel & Peter D. Balsam & Eleanor H. Simpson, 2022. "Dopamine encodes real-time reward availability and transitions between reward availability states on different timescales," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Carole Morel & Sarah E. Montgomery & Long Li & Romain Durand-de Cuttoli & Emily M. Teichman & Barbara Juarez & Nikos Tzavaras & Stacy M. Ku & Meghan E. Flanigan & Min Cai & Jessica J. Walsh & Scott J., 2022. "Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Lior Matityahu & Naomi Gilin & Gideon A. Sarpong & Yara Atamna & Lior Tiroshi & Nicolas X. Tritsch & Jeffery R. Wickens & Joshua A. Goldberg, 2023. "Acetylcholine waves and dopamine release in the striatum," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    12. Susanne Prokop & Péter Ábrányi-Balogh & Benjámin Barti & Márton Vámosi & Miklós Zöldi & László Barna & Gabriella M. Urbán & András Dávid Tóth & Barna Dudok & Attila Egyed & Hui Deng & Gian Marco Leggi, 2021. "PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    13. Johannes Algermissen & Jennifer C. Swart & René Scheeringa & Roshan Cools & Hanneke E. M. den Ouden, 2024. "Prefrontal signals precede striatal signals for biased credit assignment in motivational learning biases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Xin-Yue Wang & Wen-Bin Jia & Xiang Xu & Rui Chen & Liang-Biao Wang & Xiao-Jing Su & Peng-Fei Xu & Xiao-Qing Liu & Jie Wen & Xiao-Yuan Song & Yuan-Yuan Liu & Zhi Zhang & Xin-Feng Liu & Yan Zhang, 2023. "A glutamatergic DRN–VTA pathway modulates neuropathic pain and comorbid anhedonia-like behavior in mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Takeshi Hori & Hiroaki Okae & Shun Shibata & Norio Kobayashi & Eri H. Kobayashi & Akira Oike & Asato Sekiya & Takahiro Arima & Hirokazu Kaji, 2024. "Trophoblast stem cell-based organoid models of the human placental barrier," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Jun Huang & David Rowe & Pratima Subedi & Wei Zhang & Tyler Suelter & Barbara Valent & David E. Cook, 2022. "CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Aniruddha Das & Sarah Holden & Julie Borovicka & Jacob Icardi & Abigail O’Niel & Ariel Chaklai & Davina Patel & Rushik Patel & Stefanie Kaech Petrie & Jacob Raber & Hod Dana, 2023. "Large-scale recording of neuronal activity in freely-moving mice at cellular resolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    20. Xiangjun He & Zhenjie Zhang & Junyi Xue & Yaofeng Wang & Siqi Zhang & Junkang Wei & Chenzi Zhang & Jue Wang & Brian Anugerah Urip & Chun Christopher Ngan & Junjiang Sun & Yuefeng Li & Zhiqian Lu & Hui, 2022. "Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39554-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.