IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37797-y.html
   My bibliography  Save this article

Parasubthalamic calretinin neurons modulate wakefulness associated with exploration in male mice

Author

Listed:
  • Han Guo

    (Fudan University
    Fudan University
    Fudan University)

  • Jian-Bo Jiang

    (Fudan University)

  • Wei Xu

    (Fudan University)

  • Mu-Tian Zhang

    (Fudan University)

  • Hui Chen

    (Fudan University)

  • Huan-Ying Shi

    (Fudan University)

  • Lu Wang

    (Fudan University)

  • Miao He

    (Fudan University)

  • Michael Lazarus

    (University of Tsukuba)

  • Shan-Qun Li

    (Fudan University)

  • Zhi-Li Huang

    (Fudan University)

  • Wei-Min Qu

    (Fudan University)

Abstract

The parasubthalamic nucleus (PSTN) is considered to be involved in motivation, feeding and hunting, all of which are highly depending on wakefulness. However, the roles and underlying neural circuits of the PSTN in wakefulness remain unclear. Neurons expressing calretinin (CR) account for the majority of PSTN neurons. In this study in male mice, fiber photometry recordings showed that the activity of PSTNCR neurons increased at the transitions from non-rapid eye movement (non-REM, NREM) sleep to either wakefulness or REM sleep, as well as exploratory behavior. Chemogenetic and optogenetic experiments demonstrated that PSTNCR neurons were necessary for initiating and/or maintaining arousal associated with exploration. Photoactivation of projections of PSTNCR neurons revealed that they regulated exploration-related wakefulness by innervating the ventral tegmental area. Collectively, our findings indicate that PSTNCR circuitry is essential for the induction and maintenance of the awake state associated with exploration.

Suggested Citation

  • Han Guo & Jian-Bo Jiang & Wei Xu & Mu-Tian Zhang & Hui Chen & Huan-Ying Shi & Lu Wang & Miao He & Michael Lazarus & Shan-Qun Li & Zhi-Li Huang & Wei-Min Qu, 2023. "Parasubthalamic calretinin neurons modulate wakefulness associated with exploration in male mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37797-y
    DOI: 10.1038/s41467-023-37797-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37797-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37797-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ali Mohebi & Jeffrey R. Pettibone & Arif A. Hamid & Jenny-Marie T. Wong & Leah T. Vinson & Tommaso Patriarchi & Lin Tian & Robert T. Kennedy & Joshua D. Berke, 2019. "Publisher Correction: Dissociable dopamine dynamics for learning and motivation," Nature, Nature, vol. 571(7763), pages 3-3, July.
    2. Kai Liu & Juhyun Kim & Dong Won Kim & Yi Stephanie Zhang & Hechen Bao & Myrto Denaxa & Szu-Aun Lim & Eileen Kim & Chang Liu & Ian R. Wickersham & Vassilis Pachnis & Samer Hattar & Juan Song & Solange , 2017. "Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep," Nature, Nature, vol. 548(7669), pages 582-587, August.
    3. Li Sun & Rui Liu & Fang Guo & Man-qing Wen & Xiao-lin Ma & Kai-yuan Li & Hao Sun & Ceng-lin Xu & Yuan-yuan Li & Meng-yin Wu & Zheng-gang Zhu & Xin-jian Li & Yan-qin Yu & Zhong Chen & Xiang-yao Li & Sh, 2020. "Parabrachial nucleus circuit governs neuropathic pain-like behavior," Nature Communications, Nature, vol. 11(1), pages 1-21, December.
    4. Can Liu & Chia-Ying Lee & Greg Asher & Liqin Cao & Yuka Terakoshi & Peng Cao & Reiko Kobayakawa & Ko Kobayakawa & Katsuyasu Sakurai & Qinghua Liu, 2021. "Posterior subthalamic nucleus (PSTh) mediates innate fear-associated hypothermia in mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Can Liu & Chia-Ying Lee & Greg Asher & Liqin Cao & Yuka Terakoshi & Peng Cao & Reiko Kobayakawa & Ko Kobayakawa & Katsuyasu Sakurai & Qinghua Liu, 2021. "Author Correction: Posterior subthalamic nucleus (PSTh) mediates innate fear-associated hypothermia in mice," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    6. Ali Mohebi & Jeffrey R. Pettibone & Arif A. Hamid & Jenny-Marie T. Wong & Leah T. Vinson & Tommaso Patriarchi & Lin Tian & Robert T. Kennedy & Joshua D. Berke, 2019. "Dissociable dopamine dynamics for learning and motivation," Nature, Nature, vol. 570(7759), pages 65-70, June.
    7. Yan-Jia Luo & Ya-Dong Li & Lu Wang & Su-Rong Yang & Xiang-Shan Yuan & Juan Wang & Yoan Cherasse & Michael Lazarus & Jiang-Fan Chen & Wei-Min Qu & Zhi-Li Huang, 2018. "Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Wen Z. Yang & Hengchang Xie & Xiaosa Du & Qian Zhou & Yan Xiao & Zhengdong Zhao & Xiaoning Jia & Jianhui Xu & Wen Zhang & Shuang Cai & Zhangjie Li & Xin Fu & Rong Hua & Junhao Cai & Shuang Chang & Jin, 2023. "A parabrachial-hypothalamic parallel circuit governs cold defense in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Armando G. Salinas & Jeong Oen Lee & Shana M. Augustin & Shiliang Zhang & Tommaso Patriarchi & Lin Tian & Marisela Morales & Yolanda Mateo & David M. Lovinger, 2023. "Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Susanne Prokop & Péter Ábrányi-Balogh & Benjámin Barti & Márton Vámosi & Miklós Zöldi & László Barna & Gabriella M. Urbán & András Dávid Tóth & Barna Dudok & Attila Egyed & Hui Deng & Gian Marco Leggi, 2021. "PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    7. Johannes Algermissen & Jennifer C. Swart & René Scheeringa & Roshan Cools & Hanneke E. M. den Ouden, 2024. "Prefrontal signals precede striatal signals for biased credit assignment in motivational learning biases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Xin-Yue Wang & Wen-Bin Jia & Xiang Xu & Rui Chen & Liang-Biao Wang & Xiao-Jing Su & Peng-Fei Xu & Xiao-Qing Liu & Jie Wen & Xiao-Yuan Song & Yuan-Yuan Liu & Zhi Zhang & Xin-Feng Liu & Yan Zhang, 2023. "A glutamatergic DRN–VTA pathway modulates neuropathic pain and comorbid anhedonia-like behavior in mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Miguel Skirzewski & Oren Princz-Lebel & Liliana German-Castelan & Alycia M. Crooks & Gerard Kyungwook Kim & Sophie Henke Tarnow & Amy Reichelt & Sara Memar & Daniel Palmer & Yulong Li & R. Jane Rylett, 2022. "Continuous cholinergic-dopaminergic updating in the nucleus accumbens underlies approaches to reward-predicting cues," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Ali Ghazizadeh & Okihide Hikosaka, 2022. "Salience memories formed by value, novelty and aversiveness jointly shape object responses in the prefrontal cortex and basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Angela M. Ianni & Daniel P. Eisenberg & Erie D. Boorman & Sara M. Constantino & Catherine E. Hegarty & Michael D. Gregory & Joseph C. Masdeu & Philip D. Kohn & Timothy E. Behrens & Karen F. Berman, 2023. "PET-measured human dopamine synthesis capacity and receptor availability predict trading rewards and time-costs during foraging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Abigail Kalmbach & Vanessa Winiger & Nuri Jeong & Arun Asok & Charles R. Gallistel & Peter D. Balsam & Eleanor H. Simpson, 2022. "Dopamine encodes real-time reward availability and transitions between reward availability states on different timescales," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Carole Morel & Sarah E. Montgomery & Long Li & Romain Durand-de Cuttoli & Emily M. Teichman & Barbara Juarez & Nikos Tzavaras & Stacy M. Ku & Meghan E. Flanigan & Min Cai & Jessica J. Walsh & Scott J., 2022. "Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Lior Matityahu & Naomi Gilin & Gideon A. Sarpong & Yara Atamna & Lior Tiroshi & Nicolas X. Tritsch & Jeffery R. Wickens & Joshua A. Goldberg, 2023. "Acetylcholine waves and dopamine release in the striatum," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    16. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Yu-Jun Wang & Gui-Ying Zan & Cenglin Xu & Xue-Ping Li & Xuelian Shu & Song-Yu Yao & Xiao-Shan Xu & Xiaoyun Qiu & Yexiang Chen & Kai Jin & Qi-Xin Zhou & Jia-Yu Ye & Yi Wang & Lin Xu & Zhong Chen & Jing, 2023. "The claustrum-prelimbic cortex circuit through dynorphin/κ-opioid receptor signaling underlies depression-like behaviors associated with social stress etiology," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Tao Jia & Ying-Di Wang & Jing Chen & Xue Zhang & Jun-Li Cao & Cheng Xiao & Chunyi Zhou, 2022. "A nigro–subthalamo–parabrachial pathway modulates pain-like behaviors," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Jilin W J L Wang & Fabrizio Lombardi & Xiyun Zhang & Christelle Anaclet & Plamen Ch Ivanov, 2019. "Non-equilibrium critical dynamics of bursts in θ and δ rhythms as fundamental characteristic of sleep and wake micro-architecture," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-35, November.
    20. Fernando M. C. V. Reis & Sandra Maesta-Pereira & Matthias Ollivier & Peter J. Schuette & Ekayana Sethi & Blake A. Miranda & Emily Iniguez & Meghmik Chakerian & Eric Vaughn & Megha Sehgal & Darren C. T, 2024. "Control of feeding by a bottom-up midbrain-subthalamic pathway," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37797-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.