IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41394-4.html
   My bibliography  Save this article

Quantifying the causal impact of biological risk factors on healthcare costs

Author

Listed:
  • Jiwoo Lee

    (Broad Institute of MIT and Harvard
    University of Helsinki
    Broad Institute of Harvard and MIT
    Massachusetts General Hospital)

  • Sakari Jukarainen

    (University of Helsinki)

  • Antti Karvanen

    (University of Helsinki)

  • Padraig Dixon

    (University of Oxford)

  • Neil M. Davies

    (University College London
    University College London
    Norwegian University of Science and Technology
    University of Bristol)

  • George Davey Smith

    (University of Bristol)

  • Pradeep Natarajan

    (Broad Institute of MIT and Harvard
    Broad Institute of Harvard and MIT
    Massachusetts General Hospital
    Harvard Medical School)

  • Andrea Ganna

    (Broad Institute of MIT and Harvard
    University of Helsinki
    Massachusetts General Hospital)

Abstract

Understanding the causal impact that clinical risk factors have on healthcare-related costs is critical to evaluate healthcare interventions. Here, we used a genetically-informed design, Mendelian Randomization (MR), to infer the causal impact of 15 risk factors on annual total healthcare costs. We calculated healthcare costs for 373,160 participants from the FinnGen Study and replicated our results in 323,774 individuals from the United Kingdom and Netherlands. Robust causal effects were observed for waist circumference (WC), adult body mass index, and systolic blood pressure, in which a standard deviation increase corresponded to 22.78% [95% CI: 18.75-26.95], 13.64% [10.26-17.12], and 13.08% [8.84-17.48] increased healthcare costs, respectively. A lack of causal effects was observed for certain clinically relevant biomarkers, such as albumin, C-reactive protein, and vitamin D. Our results indicated that increased WC is a major contributor to annual total healthcare costs and more attention may be given to WC screening, surveillance, and mitigation.

Suggested Citation

  • Jiwoo Lee & Sakari Jukarainen & Antti Karvanen & Padraig Dixon & Neil M. Davies & George Davey Smith & Pradeep Natarajan & Andrea Ganna, 2023. "Quantifying the causal impact of biological risk factors on healthcare costs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41394-4
    DOI: 10.1038/s41467-023-41394-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41394-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41394-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Sean Harrison & Padraig Dixon & Hayley E Jones & Alisha R Davies & Laura D Howe & Neil M Davies, 2021. "Long-term cost-effectiveness of interventions for obesity: A mendelian randomisation study," PLOS Medicine, Public Library of Science, vol. 18(8), pages 1-24, August.
    3. Hazewinkel, Audinga-Dea & Richmond, Rebecca C. & Wade, Kaitlin H. & Dixon, Padraig, 2022. "Mendelian randomization analysis of the causal impact of body mass index and waist-hip ratio on rates of hospital admission," Economics & Human Biology, Elsevier, vol. 44(C).
    4. Amal Malehi & Fatemeh Pourmotahari & Kambiz Angali, 2015. "Statistical models for the analysis of skewed healthcare cost data: a simulation study," Health Economics Review, Springer, vol. 5(1), pages 1-16, December.
    5. Christoph F. Kurz & Michael Laxy, 2020. "Application of Mendelian Randomization to Investigate the Association of Body Mass Index with Health Care Costs," Medical Decision Making, , vol. 40(2), pages 156-169, February.
    6. Gibran Hemani & Kate Tilling & George Davey Smith, 2017. "Orienting the causal relationship between imprecisely measured traits using GWAS summary data," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-22, November.
    7. Padraig Dixon & George Davey Smith & William Hollingworth, 2019. "The Association Between Adiposity and Inpatient Hospital Costs in the UK Biobank Cohort," Applied Health Economics and Health Policy, Springer, vol. 17(3), pages 359-370, June.
    8. Mitja I. Kurki & Juha Karjalainen & Priit Palta & Timo P. Sipilä & Kati Kristiansson & Kati M. Donner & Mary P. Reeve & Hannele Laivuori & Mervi Aavikko & Mari A. Kaunisto & Anu Loukola & Elisa Lahtel, 2023. "Author Correction: FinnGen provides genetic insights from a well-phenotyped isolated population," Nature, Nature, vol. 615(7952), pages 19-19, March.
    9. Dixon, Padraig & Harrison, Sean & Hollingworth, William & Davies, Neil M. & Davey Smith, George, 2022. "Estimating the causal effect of liability to disease on healthcare costs using Mendelian Randomization," Economics & Human Biology, Elsevier, vol. 46(C).
    10. Dixon, Padraig & Hollingworth, William & Harrison, Sean & Davies, Neil M. & Davey Smith, George, 2020. "Mendelian Randomization analysis of the causal effect of adiposity on hospital costs," Journal of Health Economics, Elsevier, vol. 70(C).
    11. Mitja I. Kurki & Juha Karjalainen & Priit Palta & Timo P. Sipilä & Kati Kristiansson & Kati M. Donner & Mary P. Reeve & Hannele Laivuori & Mervi Aavikko & Mari A. Kaunisto & Anu Loukola & Elisa Lahtel, 2023. "FinnGen provides genetic insights from a well-phenotyped isolated population," Nature, Nature, vol. 613(7944), pages 508-518, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Tuomo Hartonen & Bradley Jermy & Hanna Sõnajalg & Pekka Vartiainen & Kristi Krebs & Andrius Vabalas & Tuija Leino & Hanna Nohynek & Jonas Sivelä & Reedik Mägi & Mark Daly & Hanna M. Ollila & Lili Mila, 2023. "Nationwide health, socio-economic and genetic predictors of COVID-19 vaccination status in Finland," Nature Human Behaviour, Nature, vol. 7(7), pages 1069-1083, July.
    3. Anders Mälarstig & Felix Grassmann & Leo Dahl & Marios Dimitriou & Dianna McLeod & Marike Gabrielson & Karl Smith-Byrne & Cecilia E. Thomas & Tzu-Hsuan Huang & Simon K. G. Forsberg & Per Eriksson & Mi, 2023. "Evaluation of circulating plasma proteins in breast cancer using Mendelian randomisation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Hazewinkel, Audinga-Dea & Richmond, Rebecca C. & Wade, Kaitlin H. & Dixon, Padraig, 2022. "Mendelian randomization analysis of the causal impact of body mass index and waist-hip ratio on rates of hospital admission," Economics & Human Biology, Elsevier, vol. 44(C).
    5. Danielle Rasooly & Gina M. Peloso & Alexandre C. Pereira & Hesam Dashti & Claudia Giambartolomei & Eleanor Wheeler & Nay Aung & Brian R. Ferolito & Maik Pietzner & Eric H. Farber-Eger & Quinn Stanton , 2023. "Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. William R. Reay & Dylan J. Kiltschewskij & Maria A. Biase & Zachary F. Gerring & Kousik Kundu & Praveen Surendran & Laura A. Greco & Erin D. Clarke & Clare E. Collins & Alison M. Mondul & Demetrius Al, 2024. "Genetic influences on circulating retinol and its relationship to human health," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Linda Ottensmann & Rubina Tabassum & Sanni E. Ruotsalainen & Mathias J. Gerl & Christian Klose & Elisabeth Widén & Kai Simons & Samuli Ripatti & Matti Pirinen, 2023. "Genome-wide association analysis of plasma lipidome identifies 495 genetic associations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Hui Chen & Zeyang Wang & Lihai Gong & Qixuan Wang & Wenyan Chen & Jia Wang & Xuelian Ma & Ruofan Ding & Xing Li & Xudong Zou & Mireya Plass & Cheng Lian & Ting Ni & Gong-Hong Wei & Wei Li & Lin Deng &, 2024. "A distinct class of pan-cancer susceptibility genes revealed by an alternative polyadenylation transcriptome-wide association study," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Ozvan Bocher & Cristen J. Willer & Eleftheria Zeggini, 2023. "Unravelling the genetic architecture of human complex traits through whole genome sequencing," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    10. Aoxing Liu & Evelina T. Akimova & Xuejie Ding & Sakari Jukarainen & Pekka Vartiainen & Tuomo Kiiskinen & Sara Koskelainen & Aki S. Havulinna & Mika Gissler & Stefano Lombardi & Tove Fall & Melinda C. , 2024. "Evidence from Finland and Sweden on the relationship between early-life diseases and lifetime childlessness in men and women," Nature Human Behaviour, Nature, vol. 8(2), pages 276-287, February.
    11. Dixon, Padraig & Harrison, Sean & Hollingworth, William & Davies, Neil M. & Davey Smith, George, 2022. "Estimating the causal effect of liability to disease on healthcare costs using Mendelian Randomization," Economics & Human Biology, Elsevier, vol. 46(C).
    12. Bozzi, Debra G. & Nicholas, Lauren Hersch, 2021. "A Causal Estimate of Long-Term Health Care Spending Attributable to Body Mass Index Among Adults," Economics & Human Biology, Elsevier, vol. 41(C).
    13. Alexander T. Williams & Jing Chen & Kayesha Coley & Chiara Batini & Abril Izquierdo & Richard Packer & Erik Abner & Stavroula Kanoni & David J. Shepherd & Robert C. Free & Edward J. Hollox & Nigel J. , 2023. "Genome-wide association study of thyroid-stimulating hormone highlights new genes, pathways and associations with thyroid disease," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Cawley, John & Han, Euna & Kim, Jiyoon & Norton, Edward C., 2023. "Genetic nurture in educational attainment," Economics & Human Biology, Elsevier, vol. 49(C).
    15. A. Mukasheva & N. Saparkhojayev & Z. Akanov & A. Algazieva, 2019. "The Prevalence of Diabetes in the Republic of Kazakhstan Based on Regression Analysis Methods," International Journal of Health and Medical Sciences, Mohammad A. H. Khan, vol. 5(1), pages 8-16.
    16. Yizhe Xu & Tom H. Greene & Adam P. Bress & Brandon K. Bellows & Yue Zhang & Zugui Zhang & Paul Kolm & William S. Weintraub & Andrew S. Moran & Jincheng Shen, 2022. "An Efficient Approach for Optimizing the Cost-effective Individualized Treatment Rule Using Conditional Random Forest," Papers 2204.10971, arXiv.org.
    17. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Adrienne Tin & Pascal Schlosser & Pamela R. Matias-Garcia & Chris H. L. Thio & Roby Joehanes & Hongbo Liu & Zhi Yu & Antoine Weihs & Anselm Hoppmann & Franziska Grundner-Culemann & Josine L. Min & Vic, 2021. "Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    20. Magdalena Zimoń & Yunfeng Huang & Anthi Trasta & Aliaksandr Halavatyi & Jimmy Z. Liu & Chia-Yen Chen & Peter Blattmann & Bernd Klaus & Christopher D. Whelan & David Sexton & Sally John & Wolfgang Hube, 2021. "Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41394-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.